Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 84, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075538

RESUMO

BACKGROUND: Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS: In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS: By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS: This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Triagem Neonatal , Vitamina B 12 , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Recém-Nascido , Metilmalonil-CoA Mutase/genética , China/epidemiologia , Masculino , Feminino , Vitamina B 12/sangue , Vitamina B 12/genética , Lactente , Estudos Retrospectivos , Mutação/genética , Prognóstico , Resultado do Tratamento , Pré-Escolar
2.
Glia ; 72(10): 1821-1839, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38899762

RESUMO

The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.


Assuntos
Astrócitos , Encéfalo , Camundongos Knockout , Oligodendroglia , Succinato-Semialdeído Desidrogenase , Ácido gama-Aminobutírico , Animais , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Camundongos , Ácido gama-Aminobutírico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento
3.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110041

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Succinato-Semialdeído Desidrogenase/genética
4.
Mol Genet Metab ; 141(3): 108123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219674

RESUMO

OBJECTIVES: Inherited amino-acid metabolism disorders (IAAMDs) require lifelong protein-restricted diet. We aimed to investigate: 1/ whether IAAMDs was associated with growth, pubertal, bone mineral apparent density (BMAD) or body composition impairments; 2/ associations linking height, amino-acid mixture (AAM), plasma amino-acids and IGF1 concentrations. DESIGN: Retrospective longitudinal study of 213 patients with neonatal-onset urea cycle disorders (UCD,n = 77), organic aciduria (OA,n = 89), maple syrup urine disease (MSUD,n = 34), or tyrosinaemia type 1 (n = 13). METHODS: We collected growth parameters, pubertal status, BMAD, body composition, protein-intake, and IGF1 throughout growth. RESULTS: Overall final height (n = 69) was below target height (TH): -0.9(1.4) vs. -0.1(0.9) SD, p < 0.001. Final height was ≤ TH-2SD in 12 (21%) patients. Height ≤ - 2SD was more frequent during puberty than during early-infancy and pre-puberty: 23.5% vs. 6.9%, p = 0.002; and vs. 10.7%, p < 0.001. Pubertal delay was frequent (26.7%). Height (SD) was positively associated with isoleucine concentration: ß, 0.008; 95%CI, 0.003 to 0.012; p = 0.001. In the pubertal subgroup, height (SD) was lower in patients with vs. without AAM supplementation: -1.22 (1.40) vs. -0.63 (1.46) (p = 0.02). In OA, height and median (IQR) isoleucine and valine concentrations(µmol/L) during puberty were lower in patients with vs. without AAM supplementation: -1.75 (1.30) vs. -0.33 (1.55) SD, p < 0.001; and 40 (23) vs. 60 (25) (p = 0.02) and 138 (92) vs. 191 (63) (p = 0.01), respectively. No correlation was found with IGF1. Lean-mass index was lower than fat-mass index: -2.03 (1.15) vs. -0.44 (0.89), p < 0.001. CONCLUSIONS: In IAAMDs, growth retardation worsened during puberty which was delayed in all disease subgroups. Height seems linked to the disease, AAM composition and lower isoleucine concentration, independently of the GH-IGF1 pathway. We recommend close monitoring of diet during puberty.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doença da Urina de Xarope de Bordo , Recém-Nascido , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Isoleucina , Transtornos do Crescimento , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos , Estatura
5.
Mol Genet Metab ; 141(3): 108148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302374

RESUMO

BACKGROUND: Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal-recessive neurometabolic disorder caused by variants in dopa decarboxylase (DDC) gene, resulting in a severe combined deficiency of serotonin, dopamine, norepinephrine, and epinephrine. Birth prevalence of AADCD varies by population. In pilot studies, 3-O-methyldopa (3-OMD) was shown to be a reliable biomarker for AADCD in high-throughput newborn screening (NBS) allowing an early diagnosis and access to gene therapy. To evaluate the usefulness of this method for routine NBS, 3-OMD screening results from the largest three German NBS centers were analyzed. METHODS: A prospective, multicenter (n = 3) NBS pilot study evaluated screening for AADCD by quantifying 3-OMD in dried blood spots (DBS) using tandem mass spectrometry (MS/MS). RESULTS: In total, 766,660 neonates were screened from January 2021 until June 2023 with 766,647 with unremarkable AADCD NBS (766,443 by 1st-tier analysis and 204 by 2nd-tier analysis) and 13 with positive NBS result recalled for confirmatory diagnostics (recall-rate about 1:59,000). Molecular genetic analysis confirmed AADCD (c.79C > T p.[Arg27Cys] in Exon 2 und c.215 A > C p.[His72Pro] in Exon 3) in one infant. Another individual was highly suspected with AADCD but died before confirmation (overall positive predictive value 0.15). False-positive results were caused by maternal L-Dopa use (n = 2) and prematurity (30th and 36th week of gestation, n = 2). However, in 63% (n = 7) the underlying etiology for false positive results remained unexplained. Estimated birth prevalence (95% confidence interval) was 1:766,660 (95% CI 1:775,194; 1:769,231) to 1:383,330 (95% CI 1:384,615; 1:383,142). The identified child remained asymptomatic until last follow up at the age of 9 months. CONCLUSIONS: The proposed screening strategy with 3-OMD detection in DBS is feasible and effective to identify individuals with AADCD. The estimated birth prevalence supports earlier estimations and confirms AADCD as a very rare disorder. Pre-symptomatic identification by NBS allows a disease severity adapted drug support to diminish clinical complications until individuals are old enough for the application of the gene therapy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/deficiência , Espectrometria de Massas em Tandem , Lactente , Recém-Nascido , Criança , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Prevalência , Estudos Prospectivos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética
6.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452608

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como Assunto
7.
Mol Genet Metab ; 141(1): 108117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134582

RESUMO

OBJECTIVES: The MetabQoL 1.0 is the first disease-specific health related quality of life (HrQoL) questionnaire for patients with intoxication-type inherited metabolic disorders. Our aim was to assess the validity and reliability of the MetabQoL 1.0, and to investigate neuropsychiatric burden in our patient population. METHODS: Data from 29 patients followed at a single center, aged between 8 and 18 years with the diagnosis of methylmalonic acidemia (MMA), propionic acidemia (PA) or isovaleric acidemia (IVA), and their parents were included. The Pediatric Quality of Life Inventory (PedsQoL) was used to evaluate the validity and reliability of MetabQoL 1.0. RESULTS: The MetabQoL 1.0 was shown to be valid and reliable (Cronbach's alpha: 0.64-0.9). Fourteen out of the 22 patients (63.6%) formally evaluated had neurological findings. Of note, 17 out of 20 patients (85%) had a psychiatric disorder when evaluated formally by a child and adolescent psychiatrist. The median mental scores of the MetabQoL 1.0 proxy report were significantly higher than those of the self report (p = 0.023). Patients with neonatal-onset disease had higher MetabQoL 1.0 proxy physical (p = 0.008), mental (p = 0.042), total scores (p = 0.022); and self report social (p = 0.007) and total scores (p = 0.043) than those with later onset disease. CONCLUSIONS: This study continues to prove that the MetabQoL 1.0 is an effective tool to measure what matters in intoxication-type inherited metabolic disorders. Our results highlight the importance of clinical assessment complemented by patient reported outcomes which further expands the evaluation toolbox of inherited metabolic diseases.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Acidemia Propiônica , Criança , Recém-Nascido , Adolescente , Humanos , Acidemia Propiônica/diagnóstico , Qualidade de Vida/psicologia , Turquia , Reprodutibilidade dos Testes , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Inquéritos e Questionários
8.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387306

RESUMO

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Assuntos
Proteínas de Transporte , Hidroxocobalamina , Fenótipo , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Hidroxocobalamina/administração & dosagem , Hidroxocobalamina/uso terapêutico , Masculino , Feminino , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/sangue , Vitamina B 12/sangue , Pré-Escolar , Proteínas de Transporte/genética , Estudos Retrospectivos , Oxirredutases/genética , Criança , Ácido Metilmalônico/sangue , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Lactente , Mutação de Sentido Incorreto , Homozigoto , Heterozigoto , Homocisteína/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Adulto
9.
Mol Genet Metab ; 142(1): 108362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452609

RESUMO

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.


Assuntos
Amidinotransferases , Amidinotransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos , Creatina , Creatina/deficiência , Guanidinoacetato N-Metiltransferase , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Transtornos dos Movimentos/congênito , Proteínas do Tecido Nervoso , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Distúrbios da Fala , Humanos , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Creatina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Amidinotransferases/genética , Amidinotransferases/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Mutação , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Fenótipo , Curadoria de Dados , Deficiências do Desenvolvimento
10.
J Hum Genet ; 69(3-4): 153-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216729

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/deficiência , Dopa Descarboxilase , Humanos , Dopa Descarboxilase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Íntrons , Mutação de Sentido Incorreto
11.
J Sleep Res ; 33(4): e14105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38148273

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sistema Glinfático , Imageamento por Ressonância Magnética , Transtornos do Sono-Vigília , Succinato-Semialdeído Desidrogenase , Ácido gama-Aminobutírico , Humanos , Masculino , Feminino , Ácido gama-Aminobutírico/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Transtornos do Sono-Vigília/fisiopatologia , Sistema Glinfático/fisiopatologia , Criança , Succinato-Semialdeído Desidrogenase/deficiência , Espectroscopia de Ressonância Magnética , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Aquaporina 4 , Laringoestenose/fisiopatologia , Pré-Escolar , Deficiências do Desenvolvimento
12.
J Inherit Metab Dis ; 47(2): 217-219, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38326670

RESUMO

We report the case of a Syrian female refugee with late diagnosis of glutaric aciduria type 1 characterised by massive axial hypotonia and quadriplegia who only started adequate diet upon arrival in Switzerland at the age of 4 years, after a strenuous migration journey. Soon after arrival, she died from an unexpected severe upper cervical myelopathy, heralded by acute respiratory distress after a viral infection. This was likely due to repeated strains on her hypotonic neck and precipitated by an orthotopic os odontoideum who led to atlanto-axial subluxation. This case reminds us not to omit handling patients with insufficient postural control and hypotonia with great care to avoid progressive cervical myelopathy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Processo Odontoide , Doenças da Medula Espinal , Pré-Escolar , Feminino , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Hipotonia Muscular
13.
J Inherit Metab Dis ; 47(3): 476-493, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581234

RESUMO

Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Terapia Genética , Succinato-Semialdeído Desidrogenase , Transmissão Sináptica , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Terapia Genética/métodos , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Transmissão Sináptica/genética , Animais
14.
J Inherit Metab Dis ; 47(1): 176-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221762

RESUMO

Inborn errors of neurotransmitter (NT) metabolism are a group of rare, heterogenous diseases with predominant neurological features, such as movement disorders, autonomic dysfunction, and developmental delay. Clinical overlap with other disorders has led to delayed diagnosis and treatment, and some conditions are refractory to oral pharmacotherapies. Gene therapies have been developed and translated to clinics for paediatric inborn errors of metabolism, with 38 interventional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine synthesis and neurotransmission through viral gene therapy have been developed for Parkinson's disease. Along with the recent European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and safety profiles can be achieved in this group of diseases. In this review, we present preclinical and clinical advances to address NT-related diseases, and summarise potential challenges that require careful considerations for NT gene therapy studies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doença de Parkinson , Humanos , Criança , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Descarboxilases de Aminoácido-L-Aromático , Terapia Genética , Neurotransmissores
15.
J Inherit Metab Dis ; 47(4): 598-623, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627985

RESUMO

Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.


Assuntos
Erros Inatos do Metabolismo dos Metais , Sulfito Oxidase , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Coenzimas/deficiência , Consenso , Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo dos Metais/terapia , Metaloproteínas/deficiência , Cofatores de Molibdênio , Pteridinas , Sulfito Oxidase/deficiência , Sulfito Oxidase/genética
16.
J Inherit Metab Dis ; 47(3): 447-462, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38499966

RESUMO

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Fenótipo , Succinato-Semialdeído Desidrogenase , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Criança , Masculino , Feminino , Pré-Escolar , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/genética , Lactente , Adolescente , Adulto Jovem , Deficiências do Desenvolvimento/genética , Transtornos dos Movimentos/genética , Mutação , Hipotonia Muscular/genética
17.
J Inherit Metab Dis ; 47(4): 674-689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563533

RESUMO

The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine ß-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-ß-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Triagem Neonatal , Acidemia Propiônica , Humanos , Triagem Neonatal/métodos , Homocistinúria/diagnóstico , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Acidemia Propiônica/diagnóstico , Feminino , Masculino , Alemanha , Lactente , Projetos Piloto , Pré-Escolar , Vitamina B 12/sangue , Criança , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular , Transtornos Psicóticos
18.
Pediatr Transplant ; 28(6): e14834, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39099301

RESUMO

BACKGROUND: Despite early diagnosis and medical interventions, patients with methylmalonic acidemia (MMA) suffer from multi-organ damage and recurrent metabolic decompensations. METHODS: We conducted the largest retrospective multi-center cohort study so far, involving five transplant centers (NCCHD, KUH, KUHP, ATAK, and EMC), and identified all MMA patients (n = 38) undergoing LDLT in the past two decades. Our primary outcome was patient survival, and secondary outcomes included death-censored graft survival and posttransplant complications. RESULTS: The overall 10-year patient survival and death-censored graft survival rates were 92% and 97%, respectively. Patients who underwent LDLT within 2 years of MMA onset showed significantly higher 10-year patient survival compared to those with an interval more than 2 years (100% vs. 81%, p = 0.038), although the death-censored graft survival were not statistically different (100% vs. 93%, p = 0.22). Over the long-term follow-up, 14 patients (37%) experienced intellectual disability, while two patients developed neurological complications, three patients experienced renal dysfunction, and one patient had biliary anastomotic stricture. The MMA level significantly decreased from 2218.5 mmol/L preoperative to 307.5 mmol/L postoperative (p = 0.038). CONCLUSIONS: LDLT achieves favorable long-term patient and graft survival outcomes for MMA patients. While not resulting in complete cure, our findings support the consideration of early LDLT within 2 years of disease onset. This approach holds the potential to mitigate recurrent metabolic decompensations, and preserve the long-term renal function.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sobrevivência de Enxerto , Transplante de Fígado , Doadores Vivos , Humanos , Estudos Retrospectivos , Masculino , Feminino , Lactente , Pré-Escolar , Erros Inatos do Metabolismo dos Aminoácidos/cirurgia , Criança , Resultado do Tratamento , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Adolescente , Seguimentos
19.
Pediatr Transplant ; 28(2): e14719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433569

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA) is an autosomal recessive disorder caused by defects in propionyl-CoA (P-CoA) catabolism; of note, liver neoplasms rarely occur as a long-term complication of the disorder. Herein, we report the case of a patient with MMA and hepatocellular carcinoma (HCC) who was successfully treated with a living-donor liver transplant (LDLT) following prior kidney transplantation. CASE REPORT: A 25-year-old male patient with MMA underwent LDLT with a left lobe graft because of metabolic instability and liver neoplasms. He had presented with chronic symptoms of MMA, which had been diagnosed by genetic testing. Additionally, he had undergone living-donor kidney transplantation with his father as the donor due to end-stage kidney disease 6 years before the LDLT. He had an episode of metabolic decompensation triggered by coronavirus disease in 2019. Imaging studies revealed an intrahepatic neoplasm in the right hepatic lobe. Due to concerns about metabolic decompensation after hepatectomy, LDLT was performed using a left lobe graft obtained from the patient's mother. Pathological findings were consistent with the characteristics of well-to-moderately differentiated HCC. The postoperative course was uneventful, and the patient was discharged 48 days after the LDLT without any complications. At the 9-month follow-up, the patient's condition was satisfactory, with sufficient liver graft function and without metabolic decompensation. CONCLUSION: This case indicates that although HCC is a rare complication in patients with MMA, clinicians should be aware of hepatic malignancies during long-term follow-up.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Masculino , Humanos , Adulto , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/cirurgia , Doadores Vivos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/cirurgia
20.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345966

RESUMO

BACKGROUND: Based on research, c.609G>A (p.W203X) is a universal mutation site for MMACHC in methylmalonic acidemia (MMA) combined with homocystinuria, cblC type (cblC disease), and c.467G>A (p.G156D) mutation in families with such disease have not yet been reported. To conduct clinical and molecular genetic analysis of a family with cblC disease. METHODS: This work followed the Declaration of Helsinki. All testing methods were performed under the informed consent of our children patients' parents. A second-generation cblC family with 5 members, was selected as the research subject, including sick siblings and parents and an older sister with normal phenotype, given newborn screening for acylcarnitine spectrum via liquid chromatography tandem mass spectrometry (LC-MS/MS), and diagnosed through combining urine organic acid with homocysteine detection via gas chromatography-mass spectrometry (GC-MS) with second-generation gene sequencing technology. The peripheral blood of five family members was collected for genomic DNA extraction, and the changes were screened in disease-related MMACHC sequence via PCR and direct DNA sequencing. RESULTS: The family conformed to the autosomal recessive inheritance, the proband and younger sister were cblC patients, diagnosed in February and at 22d given relevant treatment. The proband died, whereas the younger sister received follow-up treatment. Their parents and sister had normal phenotype. In 2 cases, there was compound heterozygous mutation in MMACHC called c.609G>A (p.W203X) nonsense mutation and c.467G>A (p.G156D) missense mutation in exon 4, while the father with normal phenotype had heterozygous mutation c.609G>A in exon 4 coding area. In its protein, the 203rd amino acid changed from tryptophan to a stop codon (p.W203 x). The normal mother and sister had a heterozygous mutation c.467G>A in exon 4 coding area. In its protein, the 156th amino acid changed from glycine to aspartic acid (p.G156D). CONCLUSIONS: The cblC family results from c.609G>A (p.W203X) and c.467G>A (p.G156D) compound heterozygous mutations in MMACHC, which has a pathogenic impact.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Recém-Nascido , Criança , Humanos , Homocistinúria/complicações , Homocistinúria/diagnóstico , Homocistinúria/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Mutação , Aminoácidos , Biologia Molecular , Vitamina B 12 , Ácido Metilmalônico , Oxirredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA