Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 118874, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579995

RESUMO

3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.


Assuntos
Microbioma Gastrointestinal , Glucose , Ratos Sprague-Dawley , Escatol , Triptofano , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Escatol/metabolismo , Masculino , Triptofano/metabolismo , Ratos , Glucose/metabolismo , Selênio/farmacologia , Dieta
2.
Exp Cell Res ; 421(1): 113373, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183781

RESUMO

BACKGROUND: Progranulin (PGRN) is an important survival factor in the progression of multiple cancers. PURPOSE: To explore the effects and mechanisms of PGRN on malignant biological behavior of osteosarcoma (OS) cells and the effects of mesenchymal stem cells (MSCs) and the hypoxic microenvironment on PGRN alteration. MATERIAL AND METHODS: The expression pattern of PGRN in OS were evaluated in OS tissues and cell lines. Next, a loss-of-function assay investigated the function of PGRN on the proliferation, migration and cell death of OS cells. The activation of MAPK signaling in the process was examined by western blot and functional experiments accompanied by skatole. Additionally, we internally silenced hypoxia-inducible factor-1α (HIF-1α) in MSCs along with exogenously added HIF-1α (exo-HIF-1α) to explore how MSCs affect PGRN alteration and the malignant behavior of OS cells. RESULTS: An aberrantly high expression of PGRN was observed in OS and associated with the poor prognosis of OS patients. PGRN knockdown repressed the proliferation, migration and induced cell death of OS cells, and activating MAPK pathway reversed these effects. Further evidence showed that MSCs regulated PGRN to mediate the malignant biological behavior of OS cells. Hypoxia enhanced HIF-1α expression in MSCs. HIF-1α silencing in MSCs under hypoxia suppressed the oncogenic effects of MSCs and reduced PGRN expression in OS cells, while the treatment of exo-HIF-1α reversed the depressive effects of HIF1α silencing on OS progression. CONCLUSION: Overall, we concluded that PGRN, which was activated by the increase of hypoxic-MSCs-derived HIF-1α, promoted OS progression through the activation of MAPK signaling.


Assuntos
Neoplasias Ósseas , Células-Tronco Mesenquimais , Osteossarcoma , Humanos , Progranulinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Escatol/metabolismo , Hipóxia Celular/fisiologia , Proliferação de Células , Osteossarcoma/patologia , Hipóxia/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Microambiente Tumoral
3.
Xenobiotica ; 53(1): 60-65, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36976910

RESUMO

The 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation of skatole (a contributor to boar taint) mediated by minipig liver microsomes and recombinant P450 enzymes expressed in bacterial membranes were investigated.At low substrate concentrations of 10 µM, the formation rates of indole-3-carbinol, 6-hydroxyskatole, and the sum of 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole in male minipig liver microsomes were significantly lower than those in female minipig liver microsomes.Compensatory 3-methyloxindole and indole-3-carbinol formation in minipig liver microsomes, which lack 6-hydroxyskatole formation in males, was mediated partly by liver microsomal P450 1A2 and P450 1A2/2E1, respectively. These enzymes were suppressed by typical P450 inhibitors in female minipig liver microsomes.Among the 14 pig P450 forms evaluated, P450 2A19 was the dominant form mediating 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole formation from skatole at substrate concentrations of 100 µM. Positive cooperativity was observed in 3-methyloxindole formation from skatole mediated by male minipig liver microsomes and by pig P450 3A22 with Hill coefficients of 1.2-1.5.These results suggest high skatole 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation activities of pig P450 2A19 and compensatory skatole oxidations mediated by pig P450 1A2, 2E1, or 3A22 in male minipig liver microsomes.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Masculino , Animais , Feminino , Escatol/metabolismo , Microssomos Hepáticos/metabolismo , Hidroxilação , Porco Miniatura/metabolismo , Odorantes , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo
4.
Biosci Biotechnol Biochem ; 87(6): 611-619, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36941128

RESUMO

Increased tumor necrosis factor α (TNFα) expression in intestinal epithelial cells (IECs) plays a major role in the development and progression of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The present study aimed to clarify the relationship between TNFα and skatole, a tryptophan-derived gut microbiota metabolite. The aryl hydrocarbon receptor (AhR) antagonist CH223191 promoted, whereas the p38 inhibitor SB203580 suppressed the increase in TNFα mRNA and protein expression induced by skatole in intestinal epithelial Caco-2 cells. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 repressed only the increased TNFα protein expression, whereas the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 did not affect increased TNFα expression at any level. A neutralizing antibody against TNFα partially inhibited skatole-induced cell death. Overall, these results suggested that TNFα expression is increased by the concerted actions of skatole-activated p38 and JNK, and that TNFα exerts autocrine/paracrine actions on IECs despite partial suppression by activated AhR. Therefore, skatole might play an important role in the development and progression of IBD and CRC via increased TNFα expression.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Escatol/metabolismo , Células CACO-2 , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células Epiteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Ecotoxicol Environ Saf ; 249: 114464, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321683

RESUMO

Skatole is a typical malodor compound in animal wastes. Several skatole-degrading bacterial strains have been obtained, whereas the molecular response of strains to skatole stress has not been well elucidated. Herein, the skatole degradation by a Gram-positive strain Rhodococcus aetherivorans DMU1 was investigated. Strain DMU1 showed high efficiency in skatole degradation under the conditions of 25-40 °C and pH 7.0-10.0. It could utilize various aromatics, including cresols, phenol, and methylindoles, as the sole carbon source for growth, implying its potential in the bioremediation application of animal wastes. Transcriptomic sequencing revealed that 328 genes were up-regulated and 640 genes were down-regulated in strain DMU1 when grown in the skatole-containing medium. Skatole increased the gene expression levels of antioxidant defense systems and heat shock proteins. The expression of ribosome-related genes was significantly inhibited which implied the growth inhibition of skatole. A rich set of oxidoreductases were changed, and a novel gene cluster containing the flavoprotein monooxygenase and ring-hydroxylating oxygenase genes was highly up-regulated, which was probably involved in skatole upstream degradation. The upregulation pattern of this gene cluster was further verified by qRT-PCR assay. Furthermore, skatole should be mainly degraded via the catechol ortho-cleavage pathway with cat25170 as the functional gene. The gene cat25170 was cloned and expressed in E. coli BL21(DE3). Pure enzyme assays showed that Cat25170 could catalyze catechol with Km 9.96 µmol/L and kcat 12.36 s-1.


Assuntos
Rhodococcus , Escatol , Animais , Escatol/metabolismo , Escherichia coli/genética , Rhodococcus/metabolismo , Catecóis/metabolismo , Perfilação da Expressão Gênica , Biodegradação Ambiental
6.
J Environ Sci (China) ; 127: 688-699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522097

RESUMO

3-Methylindole (skatole) is regarded as one of the most offensive compounds in odor emission. Biodegradation is feasible for skatole removal but the functional species and genes responsible for skatole degradation remain enigmatic. In this study, an efficient aerobic skatole-degrading consortium was obtained. Rhodococcus and Pseudomonas were identified as the two major and active populations by integrated metagenomic and metatranscriptomic analyses. Bioinformatic analyses indicated that the skatole downstream degradation was mainly via the catechol pathway, and upstream degradation was likely catalyzed by the aromatic ring-hydroxylating oxygenase and flavin monooxygenase. Genome binning and gene analyses indicated that Pseudomonas, Pseudoclavibacter, and Raineyella should cooperate with Rhodococcus for the skatole degradation process. Moreover, a pure strain Rhodococcus sp. DMU1 was successfully obtained which could utilize skatole as the sole carbon source. Complete genome sequencing showed that strain DMU1 was the predominant population in the consortium. Further crude enzyme and RT-qPCR assays indicated that strain DMU1 degraded skatole through the catechol ortho-cleavage pathway. Collectively, our results suggested that synergistic degradation of skatole in the consortium should be performed by diverse bacteria with Rhodococcus as the primary degrader, and the degradation mainly proceeded via the catechol pathway.


Assuntos
Rhodococcus , Escatol , Escatol/metabolismo , Biodegradação Ambiental , Rhodococcus/genética , Rhodococcus/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Pseudomonas/metabolismo , Catecóis/metabolismo
7.
Environ Res ; 182: 109123, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069749

RESUMO

Skatole is the key malodorous compound in livestock and poultry waste and wastewater with a low odor threshold. It not only causes serious nuisance to residents and workers, but also poses threat to the environment and human health due to its biotoxicity and recalcitrant nature. Biological treatment is an eco-friendly and cost-effective approach for skatole removal, while the bacterial resources are scarce. Herein, the Burkholderia strain was reported to efficiently degrade skatole for the first time. Results showed that strain IDO3 maintained high skatole-degrading performance under the conditions of pH 4.0-9.0, rotate speed 0-250 rpm, and temperature 30-35 °C. RNA-seq analysis indicated that skatole activated the oxidative phosphorylation and ATP production levels in strain IDO3. The oxidoreductase activity item which contained 373 differently expressed genes was significantly impacted by Gene Ontology analysis. Furthermore, the bioaugmentation experiment demonstrated that strain IDO3 could notably increase the removal of skatole in activated sludge systems. High-throughput 16S rRNA gene sequencing data indicated that the alpha-diversity and bacterial community tended to be stable in the bioaugmented group after 8 days operation. PICRUSt analysis indicated that xenobiotics biodegradation and metabolism, and membrane transport categories significantly increased, consistent with the improved skatole removal performance in the bioaugmented group. Burkholderia was survived and colonized to be the predominant population during the whole operation process (34.19-64.00%), confirming the feasibility of Burkholderia sp. IDO3 as the bioaugmentation agent in complex systems.


Assuntos
Burkholderia , Esgotos , Escatol , Biodegradação Ambiental , Reatores Biológicos , Humanos , RNA Ribossômico 16S , Escatol/metabolismo
8.
Biochem Biophys Res Commun ; 510(4): 649-655, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30739789

RESUMO

Intestinal bacteria produce skatole (3-methylindole) from tryptophan in dietary proteins and ingesting large quantities of animal protein is associated with increased fecal skatole concentrations. Although possibly associated with disrupted intestinal homeostasis, the influence of skatole on intestinal epithelial cellular function has not been characterized in detail. The present study aimed to determine whether skatole induces intestinal epithelial cell (IEC) dysfunction. We found that skatole dose-dependently caused IEC death and time-dependently induced IEC apoptosis. Since skatole directly interacts with aryl hydrocarbon receptors (AhR), we investigated whether these receptors influence the skatole-induced death of IEC. In addition to increased AhR transcriptional activity induced by skatole, the AhR antagonist CH223191 partially suppressed of skatole-induced IEC death. Extracellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) are mitogen-activated protein kinases (MAPK) induced by skatole. None of them were repressed by CH223191, whereas the p38 inhibitor SB203580 promoted skatole-induced IEC death. These findings together indicated that skatole induces both AhR-dependent activation pathways and the AhR-independent activation of p38, consequently regulating the amount of IEC death. Accumulating evidence indicates that consuming large amounts of animal protein is associated with the pathogenesis and progression of inflammatory bowel diseases (IBD). Thus, intestinal skatole production induced by large amounts of dietary animal protein might be associated via IEC death with intestinal pathologies such as IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/citologia , Intestinos/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Escatol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Células CACO-2 , Morte Celular , Ativação Enzimática , Humanos , Mucosa Intestinal/metabolismo
9.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635386

RESUMO

The effect of high levels of dietary chicory roots (25%) and intracecal exogenous butyrate infusion on skatole formation and gut microbiota was investigated in order to clarify the mechanisms underlying the known reducing effect of chicory roots on skatole production in entire male pigs. A Latin square design with 3 treatments (control, chicory, and butyrate), 3 periods, and 6 animals was carried out. Chicory roots showed the lowest numerical levels of skatole in both feces and plasma and butyrate infusion the highest. In the chicory group, an increased abundance of the skatole-producing bacterium Olsenella scatoligenes compared to the control group (P = 0.06), and a numerically higher relative abundance of Olsenella than for the control and butyrate groups, was observed. Regarding butyrate-producing bacteria, the chicory group had lower abundance of Roseburia but a numerically higher abundance of Megasphaera than the control group. Lower species richness was found in the chicory group than in the butyrate group. Moreover, beta diversity revealed that the chicory group formed a distinct cluster, whereas the control and butyrate groups clustered more closely to each other. The current data indicated that the skatole-reducing effect of chicory roots is neither via inhibition of cell apoptosis by butyrate nor via suppression of skatole-producing bacteria in the pig hindgut. Thus, the mode of action is most likely through increased microbial activity with a corresponding high incorporation of amino acids into bacterial biomass, and thereby suppressed conversion of tryptophan into skatole, as indicated in the literature.IMPORTANCE Castration is practiced to avoid the development of boar taint, which negatively affects the taste and odor of pork, and undesirable aggressive behavior. Due to animal welfare issues, alternatives to surgical castration are sought, though. Boar taint is a result of high concentrations of skatole and androstenone in back fat. Skatole is produced by microbial fermentation in the large intestine, and therefore, its production can be influenced by manipulation of the microbiota. Highly fermentable dietary fiber reduces skatole production. However, various theories have been proposed to explain the mode of action. In order to search for other alternatives, more efficient or less expensive, to reduce skatole via feeding, it is important to elucidate the mechanism behind the observed effect of highly fermentable dietary fiber on skatole. Our results indicate that highly fermentable dietary fiber does not affect skatole production by reducing the number of skatole-producing bacteria or stimulating butyrate production in the large intestine.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Cichorium intybus/metabolismo , Microbioma Gastrointestinal , Raízes de Plantas/metabolismo , Escatol/metabolismo , Suínos/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cichorium intybus/química , Fezes/química , Masculino , Raízes de Plantas/química , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
10.
J Anim Physiol Anim Nutr (Berl) ; 102(3): 706-716, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29105163

RESUMO

The experiment was conducted to investigate the in vitro effects of inulin and soya bean oligosaccharide (SBO) on the metabolism of L-tryptophan (L-try) to skatole production, and the intestinal microbiota in broilers. Treatments were as follows: caecal microbiota control (Cc), Cc + inulin, Cc + SBO, rectal microbiota control (Rc), Rc + inulin and Rc + SBO. Microbial suspensions were anaerobically incubated at 38°C for 24 hr. The results showed that concentrations of skatole and acetic acid were significantly lower in caecal microbiota fermentation broth (MFB) than those in rectal MFB (p < .05). Addition of inulin or SBO significantly decreased the concentrations of indole and skatole and rate of L-try degradation (p < .05). Inulin groups had lower indole than SBO groups (p < .05). PCR-DGGE analysis revealed that addition of inulin or SBO decreased the microbiota richness (p < .05), but no significant differences in Shannon index (p > .05). Four distinct bands were detected in inulin and SBO groups, which were related to two of Bacteroides, one of Firmicutes and Bifidobacteria. Six bands were detected only in control groups, which represented uncultured Rikenellaceae, Roseburia, Escherichia/Shigella dysenteriae, Bacteroides uniformis (T), Parabacteroides distasonis and Enterobacter aerogenes. Populations of Lactobacilli, Bifidobacteria and total bacteria in inulin groups were higher than those in control groups (p < .05). For SBO groups, only population of total bacteria increased (p < .05). However, there were no significant differences in Escherichia coli population among treatments (p > .05). These results suggest that reduced concentrations of skatole and indole in the presence of inulin and SBO may be caused by decrease in L-try degradation rate, which were caused by change in microbial ecosystem and pH value. Uncultured B. uniformis (T) and E. aerogenes may be responsible for degradation of L-try to skatole.


Assuntos
Galinhas/microbiologia , Glycine max/química , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Inulina/farmacologia , Oligossacarídeos/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , DNA Bacteriano/genética , Feminino , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Oligossacarídeos/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Escatol/metabolismo
11.
Arch Anim Nutr ; 70(5): 378-88, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27434497

RESUMO

This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Taninos Hidrolisáveis/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Escatol/metabolismo , Sus scrofa/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Taninos Hidrolisáveis/administração & dosagem , Taninos Hidrolisáveis/toxicidade , Intestinos/anatomia & histologia , Intestinos/fisiologia , Masculino
12.
Int J Syst Evol Microbiol ; 65(Pt 4): 1227-1233, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25634945

RESUMO

Strain SK9K4(T), which is a strictly anaerobic, non-motile, non-sporulating, Gram-stain-positive, saccharolytic coccobacillus, was isolated from pig faeces. SK9K4(T) metabolized indol-3-acetic acid to 3-methylindole (skatole), which is the main contributor to boar taint; it also produced 4-methylphenol (p-cresol) from p-hydroxyphenylacetic acid. Phylogenetic analyses, based on 16S rRNA gene sequences, revealed that the isolate represented a new lineage within the genus Olsenella of the family Atopobiaceae . Strain SK9K4(T) was most closely related to the type strains of the three species of the genus Olsenella with validly published names; Olsenella profusa DSM 13989(T) (93.6%), Olsenella uli DSM 7084(T) (93.5%) and Olsenella umbonata DSM 22620(T) (92.7%). DNA-DNA relatedness values of strain SK9K4(T) with O. profusa , O. uli and O. umbonata were 28.3%, 69.1% and 27.2%, respectively. The genomic DNA G+C content was 62.1 mol% and the major cellular fatty acids (constituting >10% of the total) were C(14 : 0) and C(18 : 1)ω9c. The major end product of glucose fermentation was lactic acid, with minor amounts of acetic acid and formic acid; no H2 was produced. Discrepancies in the fatty acid profiles, the MALDI-TOF mass spectra of cell extracts and the physiological and biochemical characteristics differentiated strain SK9K4(T) from other species of the genus Olsenella and indicate that the isolate represents a novel species within this genus. The name Olsenella scatoligenes sp. nov., is proposed and the type strain is SK9K4(T) ( = JCM 19907(T) = DSM 28304(T)).


Assuntos
Actinobacteria/classificação , Cresóis/metabolismo , Filogenia , Escatol/metabolismo , Sus scrofa/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Fermentação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Lett Appl Microbiol ; 60(3): 298-306, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25495851

RESUMO

UNLABELLED: Skatole (3MI) is a major contributor to the malodor emission resulting from ruminant and human faeces. The remediation of malodor has been a major challenge for the animal production industry. In this investigation, a pure culture of purple nonsulphur bacterium capable of degrading 3MI was isolated from a swine waste lagoon using an enrichment technique and identified as Rhodopseudomonas palustris WKU-KDNS3 based on 16S rRNA analysis and UV-visible spectroscopy. The cell structure of the organism was confirmed by transmission electron microscopy. Growth profile and 3MI removal pattern were determined using media supplemented with 0.1 µmol 3MI under short-term and long-term aerobic growth conditions. The organism grew on 3MI media as luxuriantly as control (without 3MI). Growth of R. palustris WKU-KDNS3 demonstrated a significant reduction in the level of 3MI (>48%) in 72 h. The level of 3MI dropped further by >93% of the total concentration present in the medium in 21 days. Skatole remediation potential of R. palustris WKU-KDNS3 can be judiciously utilized in various animal and industrial waste treatment systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Odour pollution is a serious environmental problem, particularly in the agriculture industry, and technologies based on chemical remediation are less effective and cost prohibitive. In this study, the newly isolated Rhodopseudomonas palustris strain WKU-KDNS3 causes biodegradation of 3-methylindole (skatole), which is one of the most offensive odorants present in wastewater lagoons. Aerobic degradation of this widely spread aromatic pollutant by Rhodopseudomonas strain is a significant finding that enhances the present understanding about metabolic versatility of purple photosynthetic nonsulphur bacteria. The remediation potential of R. palustris WKU-KDNS3 can also be gainfully utilized in various waste treatment facilities.


Assuntos
Resíduos Industriais , Odorantes/prevenção & controle , Rodopseudomonas/metabolismo , Escatol/metabolismo , Agricultura , Animais , Sequência de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Humanos , RNA Ribossômico 16S/genética , Rodopseudomonas/genética , Rodopseudomonas/isolamento & purificação , Análise de Sequência de DNA , Suínos , Áreas Alagadas
14.
Biodegradation ; 26(5): 359-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126873

RESUMO

3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.


Assuntos
Cupriavidus/metabolismo , Escatol/metabolismo , Aerobiose , Biodegradação Ambiental , Biotransformação , Estrutura Molecular , Petróleo/análise , Petróleo/metabolismo , Escatol/química , Espectrometria de Massas por Ionização por Electrospray
15.
BMC Genomics ; 15: 424, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24894739

RESUMO

BACKGROUND: Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk of boar taint. There is evidence for genetic variation in the predisposition to boar taint.A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred Danish Landrace boars with high levels of skatole in fat (>0.3 µg/g), were each matched with a litter mate with low levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using the Illumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on 938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For androstenone, a 'regional heritability approach' combining information from multiple SNPs was used to estimate the genetic variation attributable to individual autosomes. RESULTS: A highly significant association was found between variation in skatole levels and SNPs within the CYP2E1 gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously. Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using GWAS. CONCLUSIONS: Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace pigs. The study agrees with evidence that the CYP2E1 gene has effects on skatole breakdown in the liver. Autosomal heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for GWAS significance.


Assuntos
Citocromo P-450 CYP2E1/genética , Corpo Adiposo/química , Carne/análise , Odorantes/análise , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Androstenos/metabolismo , Animais , Cromossomos de Mamíferos , Citocromo P-450 CYP2E1/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Masculino , Orquiectomia , Fenótipo , Escatol/metabolismo
16.
Reprod Domest Anim ; 49(2): 302-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24460981

RESUMO

The objectives of the study were to investigate the involvement of oestrogens in the regulation of skatole levels in pigs. In total, 44 intact male pigs, siblings from 10 litters, were included in the study. Pigs were orally treated weekly with either 0.1 mg letrozole/kg body weight to reduce endogenous oestrogens or the canola oil vehicle. Fat and liver samples were collected at slaughter at 16, 20 and 40 weeks of age. Skatole and androstenone levels in fat and activities of hepatic cytochrome P4501A1, CYP1A2, CYP2A19 and CYP2E1 were analysed. Letrozole treatment did not significantly change either the levels of skatole or activities of skatole-metabolising enzymes, suggesting that oestrogens are not responsible for gender-related differences in skatole concentrations in porcine tissues.


Assuntos
Tecido Adiposo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estrogênios/biossíntese , Escatol/metabolismo , Testículo/metabolismo , Tecido Adiposo/química , Androstenos/química , Androstenos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Fígado/enzimologia , Masculino , Escatol/química
17.
J Hazard Mater ; 467: 133423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359760

RESUMO

Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.


Assuntos
Lignanas , Microbiota , Escatol , Suínos , Animais , Humanos , Escatol/metabolismo , Triptofano/metabolismo , Compostos de Bifenilo
18.
Poult Sci ; 103(4): 103536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364606

RESUMO

This study evaluated the impact of dietary digestible aromatic amino acid (DAAA) levels and stachyose on growth, nutrient utilization and cecal odorous compounds in broiler chickens. A 3×2 two-factor factorial design: Three dietary DAAA levels (1.40, 1.54, 1.68%) supplemented with either 5 g/kg of stachyose or without any stachyose were used to create 6 experimental diets. Each diet was fed to 6 replicates of 10 birds from d 22 to 42. Findings revealed that broilers receiving a diet with 1.54% DAAA levels supplemented with 5 g/kg stachyose exhibited a significant boost in average daily gain and improved utilization of crude protein, ether extract, tryptophan, and methionine compared to other diet treatments (P < 0.05). As the dietary DAAA levels increased, there was a significant rise in the concentrations of indole, skatole, p-methylphenol, and butyric acid in the cecum of broilers (P < 0.05). The addition of stachyose to diets reduced concentrations of indole, skatole, phenol, p-methylphenol, acetic acid and propionic acid in the cecum (P < 0.05). The lowest concentrations of indole, phenol, p-methylphenol, volatile fatty acids and pH in cecum of broilers were observed in the treatment which diet DAAA level was 1.40% with stachyose (P < 0.05). In conclusion, dietary DAAA levels and stachyose had significant interactions on the growth, main nutrient utilization and cecal odorous compounds in broilers. The dietary DAAA level was 1.54% with 5 g/kg of stachyose can improve the growth performance, nutrient utilization. However, the dietary DAAA level was 1.40% with stachyose was more beneficial to decrease the cecal odor compound composition in broilers.


Assuntos
Galinhas , Odorantes , Oligossacarídeos , Animais , Escatol/metabolismo , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Cresóis/metabolismo , Ceco , Nutrientes , Aminoácidos Aromáticos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
19.
Biomolecules ; 14(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062564

RESUMO

Testicular steroids can alter the activity and expression of enzymes within the liver and may influence the metabolism of skatole and androstenone, which are responsible for boar taint. Plasma levels of estrone sulfate (E1S) are indicative of the steroidogenic capacity of the boar and are variable between animals of similar live weights at slaughter. This study aimed to characterize the relationship between steroidogenic capacity and the metabolism of boar taint compounds by relating plasma E1S levels at slaughter weight to the expression levels of genes regulating the metabolism of androstenone and skatole, along with their respective metabolite profiles. RT-qPCR was used to evaluate gene expression in the liver. Hepatocytes were also isolated and treated with androstenone or skatole, with metabolite levels in the incubation media quantified by high-performance liquid chromatography. Plasma E1S levels ranged from 2.2-108.5 ng/mL and were positively correlated with overall skatole metabolism (p = 0.038), the production of metabolites 3-methyloxindole (p = 0.026) and 3-hydroxy-3-methyloxindole (p = 0.036), and expression levels of key genes involved in skatole metabolism, specifically CYP2C33 (p = 0.0042), CYP2C49 (p = 0.022), and CYB5R1 (p = 0.017). There was no association between androstenone metabolism and plasma E1S concentrations; however, there was evidence of possible co-regulation amongst genes involved in the metabolism of androstenone, skatole, and estrogens. These findings indicate that steroidogenic capacity is related to the rate of skatole, but not androstenone metabolism, in slaughter-weight boars.


Assuntos
Estrona , Fígado , Escatol , Animais , Estrona/análogos & derivados , Estrona/metabolismo , Estrona/sangue , Masculino , Escatol/metabolismo , Fígado/metabolismo , Suínos , Hepatócitos/metabolismo , Regulação da Expressão Gênica
20.
Waste Manag Res ; 31(2): 223-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23308017

RESUMO

Manure produced from confined animal farms can threaten public and environmental health if not managed properly. Herein, a full-scale commercial bioconversion operation in DeQing County, China for value-added swine manure reduction using house fly, Musca domestica L., larvae is reported. The greenhouse-assisted larvae bioreactor had a maximum daily treatment capacity of 35 m(3) fresh raw manure per day. The bioconversion process produced a fresh larvae yield of 95-120 kg m(3) fresh raw manure. This process provided an alternative animal foodstuff (having 56.9 and 23.8% protein and total fat as dry matter, respectively), as well as captured nutrients for agricultural re-utilization. Bioconversion reduced odour emission (characterized by 3-methylindole) and the Escherichia coli (E. coli) index by 94.5 and 92.0%, respectively, and reductions in total weight, moisture and total Kjeldahl nitrogen in solids were over 67.2, 80.0 and 76.0%, respectively. Yearly profit under this trial period ranged from US$33.4-46.1 per m(3). It is concluded that swine manure larvae bioconversion technology with subsequent production of value-added bio-products can be a promising avenue when considering a programme to reduce waste products in an intensive animal production system.


Assuntos
Moscas Domésticas/crescimento & desenvolvimento , Esterco , Gerenciamento de Resíduos/métodos , Ração Animal/economia , Animais , Reatores Biológicos , China , Escherichia coli , Moscas Domésticas/metabolismo , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Larva/metabolismo , Escatol/metabolismo , Suínos , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA