Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38701782

RESUMO

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Assuntos
Epigênese Genética , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Bainha de Mielina/metabolismo , Humanos , Camundongos , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Rejuvenescimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Diferenciação Celular/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Masculino , Regeneração/efeitos dos fármacos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia
2.
Nat Immunol ; 25(8): 1395-1410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009838

RESUMO

Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cromatina , Células Th17 , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Animais , Cromatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/genética , Camundongos Knockout , Células Th1/imunologia , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Inflamação/imunologia , Inflamação/genética , Análise de Célula Única , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Feminino
3.
Mol Cell ; 84(14): 2596-2597, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059368

RESUMO

In a recent publication in Cell, Woo et al.1 report that stimulator of interferon genes (STING) links inflammation with glutamate-driven excitotoxicity to induce ferroptosis, identifying a mechanism of inflammation-induced neurodegeneration and also a novel candidate therapeutic target for multiple sclerosis.


Assuntos
Ferroptose , Proteínas de Membrana , Esclerose Múltipla , Neuroproteção , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Ácido Glutâmico/metabolismo , Inflamação , Transdução de Sinais
4.
Nature ; 625(7994): 321-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200296

RESUMO

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Pradaria , Esclerose Múltipla , Humanos , Conjuntos de Dados como Assunto , Dieta/etnologia , Dieta/história , Europa (Continente)/etnologia , Predisposição Genética para Doença/história , Genética Médica , História do Século XV , História Antiga , História Medieval , Migração Humana/história , Estilo de Vida/etnologia , Estilo de Vida/história , Esclerose Múltipla/genética , Esclerose Múltipla/história , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/história , Doenças Neurodegenerativas/imunologia , Densidade Demográfica
5.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
6.
Immunol Rev ; 325(1): 131-151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717158

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.


Assuntos
Dieta , Microbioma Gastrointestinal , Predisposição Genética para Doença , Esclerose Múltipla , Humanos , Microbioma Gastrointestinal/imunologia , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Esclerose Múltipla/genética , Animais , Fatores de Risco
7.
Proc Natl Acad Sci U S A ; 121(8): e2302259121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346204

RESUMO

Although evidence exists for a causal association between 25-hydroxyvitamin D (25(OH)D) serum levels, and multiple sclerosis (MS), the role of variation in vitamin D receptor (VDR) binding in MS is unknown. Here, we leveraged previously identified variants associated with allele imbalance in VDR binding (VDR-binding variant; VDR-BV) in ChIP-exo data from calcitriol-stimulated lymphoblastoid cell lines and 25(OH)D serum levels from genome-wide association studies to construct genetic instrumental variables (GIVs). GIVs are composed of one or more genetic variants that serve as proxies for exposures of interest. Here, GIVs for both VDR-BVs and 25(OH)D were used in a two-sample Mendelian Randomization study to investigate the relationship between VDR binding at a locus, 25(OH)D serum levels, and MS risk. Data for 13,598 MS cases and 38,887 controls of European ancestry from Kaiser Permanente Northern California, Swedish MS studies, and the UK Biobank were included. We estimated the association between each VDR-BV GIV and MS. Significant interaction between a VDR-BV GIV and a GIV for serum 25OH(D) was evidence for a causal association between VDR-BVs and MS unbiased by pleiotropy. We observed evidence for associations between two VDR-BVs (rs2881514, rs2531804) and MS after correction for multiple tests. There was evidence of interaction between rs2881514 and a 25(OH)D GIV, providing evidence of a causal association between rs2881514 and MS. This study is the first to demonstrate evidence that variation in VDR binding at a locus contributes to MS risk. Our results are relevant to other autoimmune diseases in which vitamin D plays a role.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Alelos , Estudo de Associação Genômica Ampla , Vitamina D/metabolismo , Calcitriol , Polimorfismo de Nucleotídeo Único
8.
J Immunol ; 212(11): 1722-1732, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607279

RESUMO

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.


Assuntos
Linfócitos T CD8-Positivos , Granzimas , Interferon gama , Perforina , Humanos , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Perforina/genética , Perforina/metabolismo , Granzimas/metabolismo , Granzimas/genética , Sistemas CRISPR-Cas , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Técnicas de Inativação de Genes , Células Cultivadas
9.
Eur J Immunol ; 54(6): e2350548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634287

RESUMO

Transforming growth factor beta (TGF-ß) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-ß signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-ß signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-ß-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-ß-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-ß signaling may restore immune homeostasis in MS patients.


Assuntos
Autoimunidade , Sistema Nervoso Central , Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Fator de Crescimento Transformador beta , MicroRNAs/genética , MicroRNAs/imunologia , Animais , Linfócitos T Reguladores/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Transdução de Sinais/imunologia , Autoimunidade/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Humanos , Sistema Nervoso Central/imunologia , Células Th17/imunologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Diferenciação Celular/imunologia , Feminino
10.
Ann Neurol ; 96(2): 289-301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747444

RESUMO

OBJECTIVE: Multiple sclerosis (MS) has a complex pathobiology, with genetic and environmental factors being crucial players. Understanding the mechanisms underlying heterogeneity in disease activity is crucial for tailored treatment. We explored the impact of DNA methylation, a key mechanism in the genetics-environment interplay, on disease activity in MS. METHODS: Peripheral immune methylome profiling using Illumina Infinium MethylationEPIC BeadChips was conducted on 249 untreated relapsing-remitting MS patients, sampled at the start of disease-modifying treatment (DMT). A differential methylation analysis compared patients with evidence of disease activity (EDA) to those with no evidence of disease activity (NEDA) over 2 years from DMT start. Utilizing causal inference testing (CIT) and Mendelian randomization (MR), we sought to elucidate the relationships between DNA methylation, gene expression, genetic variation, and disease activity. RESULTS: Four differentially methylated regions (DMRs) were identified between EDA and NEDA. Examining the influence of single nucleotide polymorphisms (SNPs), 923 variants were found to account for the observed differences in the 4 DMRs. Importantly, 3 out of the 923 SNPs, affecting DNA methylation in a DMR linked to the anti-Mullerian hormone (AMH) gene, were associated with disease activity risk in an independent cohort of 1,408 MS patients. CIT and MR demonstrated that DNA methylation in AMH acts as a mediator for the genetic risk of disease activity. INTERPRETATION: This study uncovered a novel molecular pathway implicating the interaction between DNA methylation and genetic variation in the risk of disease activity in MS, emphasizing the role of sex hormones, particularly the AMH, in MS pathobiology. ANN NEUROL 2024;96:289-301.


Assuntos
Hormônio Antimülleriano , Metilação de DNA , Esclerose Múltipla Recidivante-Remitente , Polimorfismo de Nucleotídeo Único , Humanos , Metilação de DNA/genética , Feminino , Masculino , Adulto , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/sangue , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Análise da Randomização Mendeliana , Esclerose Múltipla/genética
11.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345145

RESUMO

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Assuntos
Substância Cinzenta , Macrófagos , Microglia , Esclerose Múltipla , Substância Branca , Humanos , Microglia/metabolismo , Microglia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Masculino , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Pessoa de Meia-Idade , Transcriptoma , Adulto , Idoso
12.
Ann Neurol ; 95(6): 1112-1126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551149

RESUMO

OBJECTIVE: Specific human leucocyte antigen (HLA) alleles are not only associated with higher risk to develop multiple sclerosis (MS) and other autoimmune diseases, but also with the severity of various viral and bacterial infections. Here, we analyzed the most specific biomarker for MS, that is, the polyspecific intrathecal IgG antibody production against measles, rubella, and varicella zoster virus (MRZ reaction), for possible HLA associations in MS. METHODS: We assessed MRZ reaction from 184 Swiss patients with MS and clinically isolated syndrome (CIS) and 89 Swiss non-MS/non-CIS control patients, and performed HLA sequence-based typing, to check for associations of positive MRZ reaction with the most prevalent HLA alleles. We used a cohort of 176 Swedish MS/CIS patients to replicate significant findings. RESULTS: Whereas positive MRZ reaction showed a prevalence of 38.0% in MS/CIS patients, it was highly specific (97.7%) for MS/CIS. We identified HLA-DRB1*15:01 and other tightly linked alleles of the HLA-DR15 haplotype as the strongest HLA-encoded risk factors for a positive MRZ reaction in Swiss MS/CIS (odds ratio [OR], 3.90, 95% confidence interval [CI] 2.05-7.46, padjusted = 0.0004) and replicated these findings in Swedish MS/CIS patients (OR 2.18, 95%-CI 1.16-4.02, padjusted = 0.028). In addition, female MS/CIS patients had a significantly higher probability for a positive MRZ reaction than male patients in both cohorts combined (padjusted <0.005). INTERPRETATION: HLA-DRB1*15:01, the strongest genetic risk factor for MS, and female sex, 1 of the most prominent demographic risk factors for developing MS, predispose in MS/CIS patients for a positive MRZ reaction, the most specific CSF biomarker for MS. ANN NEUROL 2024;95:1112-1126.


Assuntos
Imunoglobulina G , Esclerose Múltipla , Humanos , Feminino , Masculino , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/líquido cefalorraquidiano , Imunoglobulina G/sangue , Adulto , Pessoa de Meia-Idade , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/genética , Cadeias HLA-DRB1/genética , Suécia/epidemiologia , Estudos de Coortes , Adulto Jovem , Vírus da Rubéola/genética , Vírus da Rubéola/imunologia , Antígenos HLA/genética , Anticorpos Antivirais/líquido cefalorraquidiano , Anticorpos Antivirais/sangue , Alelos , Suíça/epidemiologia
14.
J Cell Mol Med ; 28(10): e18396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801304

RESUMO

Previous studies have found that ferroptosis plays an important role in a variety of neurological diseases. However, the precise role of ferroptosis in the multiple sclerosis patients remains uncertain. We defined and validated a computational metric of ferroptosis levels. The ferroptosis scores were computed using the AUCell method, which reflects the enrichment scores of ferroptosis-related genes through gene ranking. The reliability of the ferroptosis score was assessed using various methods, involving cells induced to undergo ferroptosis by six different ferroptosis inducers. Through a comprehensive approach integrating snRNA-seq, spatial transcriptomics, and spatial proteomics data, we explored the role of ferroptosis in multiple sclerosis. Our findings revealed that among seven sampling regions of different white matter lesions, the edges of active lesions exhibited the highest ferroptosis score, which was associated with activation of the phagocyte system. Remyelination lesions exhibit the lowest ferroptosis score. In the cortex, ferroptosis score were elevated in neurons, relevant to a variety of neurodegenerative disease-related pathways. Spatial transcriptomics demonstrated a significant co-localization among ferroptosis score, neurodegeneration and microglia, which was verified by spatial proteomics. Furthermore, we established a diagnostic model of multiple sclerosis based on 24 ferroptosis-related genes in the peripheral blood. Ferroptosis might exhibits a dual role in the context of multiple sclerosis, relevant to both neuroimmunity and neurodegeneration, thereby presenting a promising and novel therapeutic target. Ferroptosis-related genes in the blood that could potentially serve as diagnostic and prognostic markers for multiple sclerosis.


Assuntos
Ferroptose , Esclerose Múltipla , Proteômica , Ferroptose/genética , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Humanos , Proteômica/métodos , Transcriptoma , Microglia/metabolismo , Microglia/patologia , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Neurônios/metabolismo , Neurônios/patologia , Multiômica
15.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403972

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Encefalomielite Autoimune Experimental , Mitocôndrias , Esclerose Múltipla , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Mitocôndrias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/enzimologia , Estresse Oxidativo
16.
Neurogenetics ; 25(3): 263-275, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38809364

RESUMO

Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Esclerose Múltipla , RNA Interferente Pequeno , Esclerose Múltipla/terapia , Esclerose Múltipla/genética , Humanos , Herpesvirus Humano 4/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia
17.
Clin Immunol ; 266: 110327, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053866

RESUMO

This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Esclerose Múltipla , Fator 88 de Diferenciação Mieloide , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Feminino , Masculino , Adulto , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Fator 88 de Diferenciação Mieloide/genética , Pessoa de Meia-Idade , Estudos Transversais , NF-kappa B/metabolismo , NF-kappa B/genética , Recidiva , Estudos Retrospectivos , Metilação de DNA , Biomarcadores/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
18.
Hum Genet ; 143(5): 703-719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609570

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Mapas de Interação de Proteínas , População Branca , Desequilíbrio de Ligação , Correlação de Dados , Biologia de Sistemas/métodos
19.
J Mol Evol ; 92(4): 359-362, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38926178

RESUMO

The genetic architecture of multiple sclerosis is complicated. Additionally, the disease incidence varies per population or per geographical region. A recent study gives convincing explanations about the north-south incidence gradient of multiple sclerosis in Europe, by analyzing ancient and modern human genomes. Interestingly, the evidence shows that multiple sclerosis associated immunogenetic variants underwent positive selection in Asian and European populations. Lifestyle and pathogen infections probably shaped the overall multiple sclerosis risk. These results complete the findings of previous studies that showed that a high percentage of the autoimmunity associated genetic variants are under selection pressure.


Assuntos
Evolução Molecular , Esclerose Múltipla , Seleção Genética , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Autoimunidade/genética , Predisposição Genética para Doença , Migração Humana , Europa (Continente)
20.
J Transl Med ; 22(1): 83, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245759

RESUMO

BACKGROUND: Observational studies have suggested an association between multiple sclerosis (MS) and cortical structure, but the results have been inconsistent. OBJECTIVE: We used two-sample Mendelian randomization (MR) to assess the causal relationship between MS and cortical structure. METHODS: MS data as the exposure trait, including 14,498 cases and 24,091 controls, were obtained from the International Multiple Sclerosis Genetics Consortium. Genome-wide association study (GWAS) data for cortical surface area (SAw/nw) and thickness (THw/nw) in 51,665 individuals of European ancestry were obtained from the ENIGMA Consortium. The inverse-variance weighted (IVW) method was used as the primary analysis for MR. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. Enrichment analysis was performed on MR analyses filtered by sensitivity analysis. RESULTS: After IVW and sensitivity analysis filtering, only six surviving MR results provided suggestive evidence supporting a causal relationship between MS and cortical structure, including lingual SAw (p = .0342, beta (se) = 5.7127 (2.6969)), parahippocampal SAw (p = .0224, beta (se) = 1.5577 (0.6822)), rostral middle frontal SAw (p = .0154, beta (se) = - 9.0301 (3.7281)), cuneus THw (p = .0418, beta (se) = - 0.0020 (0.0010)), lateral orbitofrontal THw (p = .0281, beta (se) = 0.0025 (0.0010)), and lateral orbitofrontal THnw (p = .0417, beta (se) = 0.0029 (0.0014)). Enrichment analysis suggested that leukocyte cell-related pathways, JAK-STAT signaling pathway, NF-kappa B signaling pathway, cytokine-cytokine receptor interaction, and prolactin signaling pathway may be involved in the effect of MS on cortical morphology. CONCLUSION: Our results provide evidence supporting a causal relationship between MS and cortical structure. Enrichment analysis suggests that the pathways mediating brain morphology abnormalities in MS patients are mainly related to immune and inflammation-driven pathways.


Assuntos
Encefalopatias , Esclerose Múltipla , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Esclerose Múltipla/genética , Causalidade , Receptores de Citocinas , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA