Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(5): 981, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149610

RESUMO

Activating mutations of FLT3 occur in about 30% of acute myeloid leukemia (AML) cases and are associated with relapse and poor prognosis. Midostaurin is the first drug approved for AML since 2000, and the first multi-kinase inhibitor approved for the FLT3-mutant subtype. To view this Bench to Bedside, open or download the PDF.


Assuntos
Antineoplásicos/uso terapêutico , Aprovação de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Estaurosporina/análogos & derivados , Antineoplásicos/química , Humanos , Leucemia Mieloide Aguda/genética , Estaurosporina/química , Estaurosporina/uso terapêutico , Estados Unidos , United States Food and Drug Administration
2.
J Biol Chem ; 297(6): 101392, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758357

RESUMO

The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2-UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.


Assuntos
Antineoplásicos/química , Orosomucoide/química , Estaurosporina/análogos & derivados , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estaurosporina/química
3.
J Mol Recognit ; 34(4): e2882, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33191558

RESUMO

The conserved GxGxxG motif of protein kinases forms a beta turn at the tip of the flexible glycine-rich loop and creates much of the ATP pocket binding surface. Notable exceptions to this sequence include GGGxxG in ABL kinase and GxGxxA in protein kinase C isoforms. We constructed the corresponding mutants of PKA, T51G, and G55A, and tested quinazoline inhibitors that were designed to bind via glycine-rich loop interactions, testing also staurosporine for comparison. The quinazoline inhibitors have significantly reduced binding strengths in both mutants. In striking contrast to these results, the binding of the "pan-kinome" inhibitor staurosporine is strengthened in the mutants. Surface plasmon resonance (SPR) shows that the tightened binding of staurosporine arises from increased kon rates, changes not offset by more moderately increased koff rates. The SPR results fit best to a two step binding process for staurosporine in wild type PKA, but not the mutants.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Inibidores de Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicina/química , Mutação , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Estaurosporina/química , Estaurosporina/metabolismo , Ressonância de Plasmônio de Superfície
4.
Biomed Chromatogr ; 35(12): e5222, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34331472

RESUMO

Midostaurin (MDS) is used for the treatment of acute myeloid leukemia, myelodysplastic syndrome, and advanced systemic mastocytosis. MDS softgel capsule samples were subjected to stress testing per International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines for impurity profiling study. MDS underwent extensive degradation under stress testing (acid, alkaline, oxidative, photolytic, thermolytic, and hydrolysis conditions) and formed four degradation products (DPs). MDS and its DPs were separated well from one another with good resolution using reserved-phase HPLC using an Inertsil ODS-3V column (250 × 4.6 mm, 5 µm) and a mobile phase of ammonium formate (40 mM) and acetonitrile. The stability-indicating characteristic of the newly developed method was proven for the estimation of MDS assay, and its organic impurities were free from interference. The validated method exhibited excellent linearity, accuracy, precision, specificity, detection limit, and quantitation limit within 25 min run time. Stress testing, robustness, and solution stability were performed to ensure the continuous performance of the developed method. The peak fractions of DPs formed under stress testing were isolated and characterized using LC-MS, 1 H and 13 C NMR, IR, and UV-Vis. The structure of the major DPs was predicted as DP1 based on the spectral data. The proposed method is effectively used for MDS in bulk drug and finished formulations in the pharmaceutical industry.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Medicamentos , Espectrometria de Massas/métodos , Estaurosporina/análogos & derivados , Cápsulas , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Estaurosporina/análise , Estaurosporina/química
5.
Anal Chem ; 92(20): 13912-13921, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32933243

RESUMO

While thermal proteome profiling (TPP) shines in the field of drug target screening by analyzing the soluble fraction of the proteome samples treated at high temperature, the counterpart, the insoluble precipitate, has been overlooked for a long time. The analysis of the precipitate is hampered by the inefficient sample processing procedure. Herein, we propose a novel method, termed microparticle-assisted precipitation screening (MAPS), for drug target identification. The MAPS method exploits the principle that drug-bound proteins will be more resistant to thermal unfolding similar to the classic TPP method, but the process of protein precipitation is assisted by microparticles. Upon heating, proteins unfold and aggregate on the surface of the microparticles. The introduction of a microparticle simplifies the whole sample preparation workflow. The proteins that precipitate on the microparticles are subjected to washing, alkylation, and digestion. The whole sample preparation is processed conveniently on the surface of the microparticles without any transfer. With the assistance of microparticles, sample loss is minimized. The MAPS method is compatible with minute amounts of initial proteins. MAPS was applied to screen the targets of several well-studied drugs and the known target proteins were successfully identified with high confidence and specificity. To investigate the specificity of the method, MAPS was applied to screen the targets of the pan-kinase inhibitor, staurosporine, and 32 protein kinases (specificity of 80%) were identified using only 20 µg of initial proteins of each sample. MAPS is an unbiased robust method for drug target screening, filling the vacancy of stability-based target screening using a precipitate.


Assuntos
Precipitação Química , Microesferas , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estaurosporina/química , Estaurosporina/metabolismo
6.
Anal Chem ; 92(1): 1363-1371, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31794197

RESUMO

High-throughput drug discovery is highly dependent on the targets available to accelerate the process of candidates screening. Traditional chemical proteomics approaches for the screening of drug targets usually require the immobilization/modification of the drug molecules to pull down the interacting proteins. Recently, energetics-based proteomics methods provide an alternative way to study drug-protein interaction by using complex cell lysate directly without any modification of the drugs. In this study, we developed a novel energetics-based proteomics strategy, the solvent-induced protein precipitation (SIP) approach, to profile the interaction of drugs with their target proteins by using quantitative proteomics. The method is easy to use for any laboratory with the common chemical reagents of acetone, ethanol, and acetic acid. The SIP approach was able to identify the well-known protein targets of methotrexate, SNS-032, and a pan-kinase inhibitor of staurosporine in cell lysate. We further applied this approach to discover the off-targets of geldanamycin. Three known protein targets of the HSP90 family were successfully identified, and several potential off-targets including NADH dehydrogenase subunits NDUFV1 and NDUFAB1 were identified for the first time, and the NDUFV1 was validated by using Western blotting. In addition, this approach was capable of evaluating the affinity of the drug-target interaction. The data collectively proved that our approach provides a powerful platform for drug target discovery.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Metotrexato/farmacologia , NADH Desidrogenase/antagonistas & inibidores , Oxazóis/farmacologia , Proteômica , Estaurosporina/farmacologia , Tiazóis/farmacologia , Ácido Acético/química , Acetona/química , Células Cultivadas , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Etanol/química , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Metotrexato/química , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Oxazóis/química , Solventes/química , Estaurosporina/química , Tiazóis/química
7.
Amino Acids ; 52(4): 511-521, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32206932

RESUMO

Kinase-targeted therapy has been widely used as a lifesaving strategy for cancer patients. However, many patients treated with targeted cancer drugs are clinically observed to rapidly develop acquired resistance. Kinase gatekeeper mutation is one of the most chief factors contributing to the resistance, which modulates the accessibility of kinase's ATP-binding pocket. Previously, the pan-kinase inhibitor Staurosporine and its analogs (termed as Staralogs) have been reported to exhibit wild-type sparing selectivity for some kinase gatekeeper mutants, such as EGFR T790M, Her2 T798M and cSrc T338M. Here, we describe an integrative approach to systematically profile the molecular response of 15 representative Staralogs to 17 kinase gatekeeper mutations in targeted cancer therapy. With the profile we are able to divide gatekeeper mutations into three classes (i.e. classes I, II and III) and to divide Staralogs into two groups (i.e. groups 1 and 2) using heuristic clustering. The class I and II mutations confer consistent sensitivity and resistance for all Staralogs, respectively, while the class III mutations address divergent effects on different Staralogs. The mutations to Ile residue can generally reduce Staralog affinity by inducing unfavorable steric hindrance, whereas the mutations to Met and Leu residues would improve Staralog affinity by establishing favorable S···π interaction, van der Waals packing and/or hydrophobic contact. The group 1 and 2 Staralogs are primarily determined by carbonyl or hydroxyl substitution state at the position 7 of Staralog core, where points to kinase gatekeeper residue and can thus be directly influenced by gatekeeper mutation.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Estaurosporina/farmacologia , Antineoplásicos/uso terapêutico , Cristalografia por Raios X , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Mutação , Neoplasias/tratamento farmacológico , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico , Estaurosporina/química , Estaurosporina/uso terapêutico
8.
Arch Pharm (Weinheim) ; 353(6): e1900320, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32285482

RESUMO

Human protein kinases have been established as promising druggable targets in cancer therapy. However, a large number of acquired drug-resistant kinase mutations are observed after first- and second-line kinase inhibitor treatments, largely limiting the application of small-molecule inhibitors in the targeted cancer therapy. Previously, the pan-kinase inhibitor staurosporine and its derivatives have been reported to selectively inhibit gatekeeper mutants over wild-type kinases, suggesting that the staurosporine scaffold is potentially helpful in developing wild-type-sparing inhibitors of drug-resistant kinase mutants. Here, a systematic response profile of 32 staurosporine scaffold-based inhibitors (SSBIs) for 61 ontology-enriched drug-resistant cancer kinase mutations is created using a combination of in silico analysis and in vitro assay, from which it is possible to identify those mutations that have the potential to cause resistance or confer sensitivity to SSBIs. The profile reveals that SSBIs exhibit distinct responses to kinase gatekeeper and nongatekeeper mutations, and SSBIs bearing p7 substituents can considerably influence their response to kinase gatekeeper mutations, particularly for the mutations of the Ile residue, which possesses a Cß methyl group that tends to cause steric clash with bound SSBIs. Nongatekeeper mutations generally have a moderate and unfavorable effect on SSBI activity, as most of them are outside the kinase active site and do not directly contact inhibitor ligands. In addition, it is found that resistance is commonly caused by mutation-induced hindrance effects, whereas sensitivity is primarily conferred by mutation-established additional interactions.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Estaurosporina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Mutação , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/genética , Estaurosporina/síntese química , Estaurosporina/química , Relação Estrutura-Atividade
9.
Angew Chem Int Ed Engl ; 59(6): 2304-2308, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730253

RESUMO

Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48 hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in-cell NMR spectroscopy experiments. We are able to monitor real-time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7 minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer-based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Metaboloma/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/química , Estaurosporina/metabolismo , Estaurosporina/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Anal Chem ; 91(16): 10407-10412, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31310505

RESUMO

Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.


Assuntos
Anilidas/química , Dasatinibe/química , Imidazóis/química , Isotipos de Imunoglobulinas/isolamento & purificação , Inibidores de Proteínas Quinases/química , Piridazinas/química , Quinolinas/química , Estaurosporina/química , Quinases da Família src/isolamento & purificação , Algoritmos , Anilidas/farmacologia , Dasatinibe/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/classificação , Isotipos de Imunoglobulinas/imunologia , Modelos Moleculares , Mieloma Múltiplo/química , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Piridazinas/farmacologia , Quinolinas/farmacologia , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática , Estaurosporina/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/metabolismo
11.
Bioorg Med Chem Lett ; 29(21): 126641, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526603

RESUMO

Selectivity profiling of compounds is important for kinase drug discovery. To this end, we aimed to develop a broad-range protein kinase assay by synthesizing a novel staurosporine-derived fluorescent probe based on staurosporine and kinase-binding related structural information. Upon structural analysis of staurosporine with kinases, a 4'-methylamine moiety of staurosporine was found to be located on the solvent side of the kinases, to which several linker units can be conjugated by either alkylation or acylation. However, such conjugation was suggested to reduce the binding affinities of the modified compound for several kinases, owing to the elimination of hydrogen bond donor moiety of NH-group from 4'-methylamine and/or steric hindrance by acyl moiety. Based on this structural information, we designed and synthesized a novel staurosporine-based probe without methyl group in order to retain the hydrogen bond donor, similar to unmodified staurosporine. The broad range of the kinase binding assay demonstrated that our novel fluorescent probe is an excellent tool for developing broad-ranging kinase binding assay.


Assuntos
Corantes Fluorescentes/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estaurosporina/química , Sítios de Ligação , Ligação Competitiva , Técnicas Biossensoriais , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Ligação de Hidrogênio , Metilaminas/química , Estrutura Molecular , Ligação Proteica , Sensibilidade e Especificidade , Estaurosporina/síntese química , Relação Estrutura-Atividade
12.
J Nat Prod ; 82(8): 2279-2290, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31361136

RESUMO

Fourteen derivatives of the marine-derived fradcarbazole A were synthesized from staurosporine. Their structures were identified by NMR and high-resolution electrospray ionization mass spectrometry (HRESIMS). The derivatives were screened in vitro for antiproliferative activity against three human leukemic cell lines (MV4-11, HL-60, K562). All of the derivatives displayed cytotoxicity against the human FLT-3 internal tandem duplication (ITD) mutant acute myeloid leukemia (AML) cell line MV4-11 with IC50 values of 0.32-0.96 µM. The mechanism of action studies indicated that the most effective 3-chloro-5‴-fluorofradcarbazole A (6) induced apoptosis of the MV4-11 cells and arrested the cell cycle at the G0/G1 phase. Furthermore, compound 6 can reduce the expression of FLT-3, CDK2, and c-kit. The results suggest that 3-chloro-5‴-fluorofradcarbazole A (6) is a potential candidate for developing novel anti-AML agents in the future.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/metabolismo , Estaurosporina/análogos & derivados , Tiazóis/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Estaurosporina/química , Estaurosporina/farmacologia , Tiazóis/química
13.
Cell Mol Life Sci ; 74(22): 4159-4169, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28634681

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.


Assuntos
Doença de Alzheimer/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antígenos de Bactérias/uso terapêutico , Azepinas/química , Azepinas/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Humanos , Azul de Metileno/química , Azul de Metileno/uso terapêutico , Neurônios/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/química , Pirazóis/uso terapêutico , Piridinas/química , Piridinas/uso terapêutico , Pirróis/química , Pirróis/uso terapêutico , Estaurosporina/química , Estaurosporina/uso terapêutico , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
14.
Molecules ; 23(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501110

RESUMO

Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as target sites, are highly conserved, and thus it is difficult to develop selective kinase inhibitors. To resolve this problem, we performed molecular dynamics simulations on 26 kinases in the aqueous solution, and analyzed topological water networks (TWNs) in their ATP binding sites. Repositioning of a known kinase inhibitor in the ATP binding sites of kinases that exhibited a TWN similar to interleukin-1 receptor-associated kinase 4 (IRAK4) allowed us to identify a hit molecule. Another hit molecule was obtained from a commercial chemical library using pharmacophore-based virtual screening and molecular docking approaches. Pharmacophoric features of the hit molecules were hybridized to design a novel compound that inhibited IRAK4 at low nanomolar levels in the in vitro assay.


Assuntos
Desenho de Fármacos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Água/química , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Estaurosporina/química , Estaurosporina/farmacologia
15.
Chem Biodivers ; 14(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27696725

RESUMO

An acquired T798M gatekeeper mutation in human epidermal growth factor receptor 2 (HER2) kinase can cause drug resistance to anti-HER2 chemotherapy drugs in lung cancer. Previously, the reversible pan-kinase inhibitor staurosporine has been found to selectively inhibit the HER2 T798M mutant over wild-type kinase, suggesting that the staurosporine scaffold is potentially to develop mutant-selective inhibitors. Here, we systematically evaluated the chemical space of staurosporine scaffold-based compounds in response to HER2 T798M mutation at structural, energetic and molecular levels by using an integrated analysis strategy. With this strategy, we were able to identify several novel wild-type sparing inhibitors with high or moderate selectivity, which are comparable to or even better than that of the parent compound staurosporine. Molecular modeling and structural analysis revealed that noncovalent contacts can form between the side chain of mutated residue Met798 and selective inhibitor ligands, which may improve the favorable interaction energy between the kinase and inhibitor and reduce the unfavorable desolvation penalty upon the kinase-inhibitor binding.


Assuntos
Inibidores de Proteínas Quinases/química , Receptor ErbB-2/metabolismo , Sítios de Ligação , Carbazóis/química , Carbazóis/metabolismo , Domínio Catalítico , Furanos , Humanos , Cinética , Ligantes , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Estaurosporina/química , Estaurosporina/metabolismo , Termodinâmica
16.
Bioorg Med Chem ; 24(14): 3116-24, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27255178

RESUMO

A derivative of the staurosporine aglycon (K252c), in which the lactam ring was replaced by a pyrazole moiety, was synthesized. The resulting indolopyrazolocarbazole (3) inhibited Pim isoforms 1-3 whereas it did not impair the activity of two known targets of K252c, protein kinase C isoforms α and γ. Compound 3 exhibited moderate cytotoxic activity toward human leukemia and colon carcinoma cell lines (K562 and HCT116), strongly suggesting that this new scaffold deserves further investigations for treatment of malignancies associated with Pim activity.


Assuntos
Pirazóis/química , Estaurosporina/síntese química , Estaurosporina/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células K562 , Modelos Moleculares , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C-alfa/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Estaurosporina/química , Relação Estrutura-Atividade
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1207-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945585

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase associated with neuronal development and brain physiology. The DYRK kinases are very unusual with respect to the sequence of the catalytic loop, in which the otherwise highly conserved arginine of the HRD motif is replaced by a cysteine. This replacement, along with the proximity of a potential disulfide-bridge partner from the activation segment, implies a potential for redox control of DYRK family activities. Here, the crystal structure of DYRK1A bound to PKC412 is reported, showing the formation of the disulfide bridge and associated conformational changes of the activation loop. The DYRK kinases represent emerging drug targets for several neurological diseases as well as cancer. The observation of distinct activation states may impact strategies for drug targeting. In addition, the characterization of PKC412 binding offers new insights for DYRK inhibitor discovery.


Assuntos
Cisteína/química , Dissulfetos/química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Estaurosporina/análogos & derivados , Tirosina/química , Motivos de Aminoácidos , Catálise , Cristalografia por Raios X , Cisteína/metabolismo , Dissulfetos/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Estaurosporina/química , Estaurosporina/metabolismo , Especificidade por Substrato , Tirosina/metabolismo , Quinases Dyrk
18.
Cancer Cell ; 11(3): 209-11, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17349577

RESUMO

In cancer, the epidermal growth factor (EGF) receptor (EGFR) can be activated by mutations that disrupt the inactive conformation and allow the active conformation to predominate. Structural studies have elucidated the molecular events that lead to EGFR activation and shown that small-molecule anti-EGFR drugs can bind to either the inactive or the active conformation of the kinase domain. In this issue of Cancer Cell, Yun et al. present 12 crystal structures of the wild-type or mutant forms of the EGFR kinase domain bound to four different ligands. This study will prove invaluable to those developing novel anti-EGFR drugs.


Assuntos
Antineoplásicos/química , Receptores ErbB/química , Modelos Moleculares , Mutação , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe , Humanos , Lapatinib , Conformação Proteica , Estrutura Terciária de Proteína , Purinas/química , Quinazolinas/química , Estaurosporina/análogos & derivados , Estaurosporina/química
19.
Cancer Cell ; 11(3): 217-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17349580

RESUMO

Mutations in the EGFR kinase are a cause of non-small-cell lung cancer. To understand their mechanism of activation and effects on drug binding, we studied the kinetics of the L858R and G719S mutants and determined their crystal structures with inhibitors including gefitinib, AEE788, and a staurosporine. We find that the mutations activate the kinase by disrupting autoinhibitory interactions, and that they accelerate catalysis as much as 50-fold in vitro. Structures of inhibitors in complex with both wild-type and mutant kinases reveal similar binding modes for gefitinib and AEE788, but a marked rotation of the staurosporine in the G719S mutant. Strikingly, direct binding measurements show that gefitinib binds 20-fold more tightly to the L858R mutant than to the wild-type enzyme.


Assuntos
Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Mutação , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe , Humanos , Lapatinib , Conformação Proteica , Estrutura Terciária de Proteína , Purinas/química , Quinazolinas/química , Estaurosporina/análogos & derivados , Estaurosporina/química
20.
J Nat Prod ; 78(9): 2236-41, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305494

RESUMO

A recently developed NMR method to simultaneously obtain both long-range heteronuclear correlations and carbon multiplicity information in a single experiment, ME-selHSQMBC, is demonstrated as a potentially useful technique for chemical shift assignment and structure elucidation of natural products presenting complicated NMR spectra. Carbon multiplicities, even for C/CH2 and odd for CH/CH3 resonances, can be distinguished directly from the relative positive/negative phase of cross-peaks. In addition, connectivity networks can be further extended by incorporating a TOCSY propagation step. Staurosporine (1) and sungucine (2) are utilized as model compounds to demonstrate these techniques.


Assuntos
Produtos Biológicos/química , Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Molecular , Estaurosporina/química , Estricnina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA