Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(17): 14066-14084, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35863749

RESUMO

The global spread of SARS-CoV-2 has proceeded at an unprecedented rate. Remarkably, characterization of the virus using modern tools in structural biology has also progressed at exceptional speed. Advances in electron-based imaging techniques, combined with decades of foundational studies on related viruses, have enabled the research community to rapidly investigate structural aspects of the novel coronavirus from the level of individual viral proteins to imaging the whole virus in a native context. Here, we provide a detailed review of the structural biology and pathobiology of SARS-CoV-2 as it relates to all facets of the viral life cycle, including cell entry, replication, and three-dimensional (3D) packaging based on insights obtained from X-ray crystallography, cryo-electron tomography, and single-particle cryo-electron microscopy. The structural comparison between SARS-CoV-2 and the related earlier viruses SARS-CoV and MERS-CoV is a common thread throughout this review. We conclude by highlighting some of the outstanding unanswered structural questions and underscore areas that are under rapid current development such as the design of effective therapeutics that block viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Microscopia Crioeletrônica , Humanos , Imageamento Tridimensional , Estruturas Virais
2.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36018853

RESUMO

Exosomes have been described as vesicles that mediate intercellular communication and thus affect normal and pathological processes. Furthermore, many viruses have been reported to deliver viral components to host cells through exosomes. However, the roles of exosomes in invertebrates response to virus infection are poorly understood. In this study, we found that exosomes purified from white spot syndrome virus (WSSV)-infected hemocytes of shrimp could promote viral replication. These exosomes contained WSSV genomic DNA and nucleocapsid protein VP15, suggesting that exosomes can transfer viral genetic materials between cells, although the exosomes did not have similar infection ability to viruses. Remarkably, in exosomes WSSV DNA was bound to VP15 protein, and moreover VP15 silencing significantly suppressed WSSV infection and reduced the WSSV genome fragments in exosomes, indicating that the presence of VP15 is required for the packing of WSSV DNA inside the exosomes and thereby assists virus to complete immune escape. The above results not only contribute to elucidation of the infection and transmission mechanisms of WSSV, but are also of great significance for further study of virus-host interaction and reasonable prevention measures. Taken together, our findings provide a novel insight into the regulation of virus transmission via exosomes and highlight potential therapeutic strategies.


Assuntos
Exossomos , Penaeidae , Viroses , Vírus da Síndrome da Mancha Branca 1 , Animais , DNA , Estruturas Virais
3.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243132

RESUMO

Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required.IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Estruturas Virais/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Flavivirus/genética , Flavivirus/metabolismo , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Modelos Biológicos , RNA Viral/genética , Proteínas não Estruturais Virais/fisiologia , Estruturas Virais/fisiologia , Replicação Viral/fisiologia
4.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899099

RESUMO

Herpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of various amounts of 20 or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models. To better understand the tegument architecture, we have developed an approach to probe capsid-tegument interactions of extracellular viral particles by encoding tobacco etch virus (TEV) protease sites in viral structural proteins, along with distinct fluorescent tags in capsid and tegument components. In this study, TEV sites were engineered within the pUL36 large tegument protein, a critical structural element that is anchored directly on the capsid surface. Purified pseudorabies virus extracellular particles were permeabilized, and TEV protease was added to selectively cleave the exposed pUL36 backbone. Interactions with the capsid were assessed in situ by monitoring the fate of the fluorescent signals following cleavage. Although several regions of pUL36 are proposed to bind capsids, pUL36 was found stably anchored to the capsid exclusively at its carboxyl terminus. Two additional tegument proteins, pUL37 and pUS3, were tethered to the capsid via pUL36, whereas the pUL16, pUL47, pUL48, and pUL49 tegument proteins were not stably bound to the capsid.IMPORTANCE Neuroinvasive alphaherpesviruses produce diseases of clinical and economic significance in humans and veterinary animals but are predominantly associated with less serious recurrent disease. Like all viruses, herpesviruses assemble a metastable particle that selectively dismantles during initial infection. This process is made more complex by the presence of a tegument layer that resides between the capsid surface and envelope. Components of the tegument are essential for particle assembly and also serve as critical effectors that promote infection upon entry into cells. How this dynamic network of protein interactions is arranged within virions is largely unknown. We present a molecular approach to dissect the tegument, and with it we begin to tease apart the protein interactions that underlie this complex layer of the virion architecture.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Suídeo 1/ultraestrutura , Proteínas Estruturais Virais/metabolismo , Estruturas Virais , Animais , Linhagem Celular , Ligação Proteica , Proteólise , Suínos , Proteínas Estruturais Virais/genética
5.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142132

RESUMO

Despite the availability of two attenuated vaccines, rotavirus (RV) gastroenteritis remains an important cause of mortality among children in developing countries, causing about 215,000 infant deaths annually. Currently, there are no specific antiviral therapies available. RV is a nonenveloped virus with a segmented double-stranded RNA genome. Viral genome replication and assembly of transcriptionally active double-layered particles (DLPs) take place in cytoplasmic viral structures called viroplasms. In this study, we describe strong impairment of the early stages of RV replication induced by a small molecule known as an RNA polymerase III inhibitor, ML-60218 (ML). This compound was found to disrupt already assembled viroplasms and to hamper the formation of new ones without the need for de novo transcription of cellular RNAs. This phenotype was correlated with a reduction in accumulated viral proteins and newly made viral genome segments, disappearance of the hyperphosphorylated isoforms of the viroplasm-resident protein NSP5, and inhibition of infectious progeny virus production. In in vitro transcription assays with purified DLPs, ML showed dose-dependent inhibitory activity, indicating the viral nature of its target. ML was found to interfere with the formation of higher-order structures of VP6, the protein forming the DLP outer layer, without compromising its ability to trimerize. Electron microscopy of ML-treated DLPs showed dose-dependent structural damage. Our data suggest that interactions between VP6 trimers are essential, not only for DLP stability, but also for the structural integrity of viroplasms in infected cells.IMPORTANCE Rotavirus gastroenteritis is responsible for a large number of infant deaths in developing countries. Unfortunately, in the countries where effective vaccines are urgently needed, the efficacy of the available vaccines is particularly low. Therefore, the development of antivirals is an important goal, as they might complement the available vaccines or represent an alternative option. Moreover, they may be decisive in fighting the acute phase of infection. This work describes the inhibitory effect on rotavirus replication of a small molecule initially reported as an RNA polymerase III inhibitor. The molecule is the first chemical compound identified that is able to disrupt viroplasms, the viral replication machinery, and to compromise the stability of DLPs by targeting the viral protein VP6. This molecule thus represents a starting point in the development of more potent and less cytotoxic compounds against rotavirus infection.


Assuntos
RNA Polimerase III/antagonistas & inibidores , Rotavirus/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Estruturas Virais/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Rotavirus/química , Rotavirus/efeitos dos fármacos , Células Sf9 , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
6.
Microb Pathog ; 128: 414-422, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597256

RESUMO

Exosomes are micro messengers encapsulating RNA, DNA, and proteins for intercellular communication associated with various physiological and pathological reactions. Several viral infection processes have been reported to pertain to exosomal pathways. However, because of the difficulty in obtaining avian-sourced exosomes, avian virus-related exosomes are scarcely investigated. In this study, we developed a protein A/G-correlated method and successfully obtained the Newcastle disease virus-related exosome (NDV Ex). These exosomes promoted NDV propagation, proven by both GW4869-mediated deprivation and exosomal supplementation. Viral structural proteins NP and F were detected in the NDV Ex and further investigation indicated that the NP protein can be transferred to DF-1 cells through exosomes. The intracellular NP protein exhibited viral replication-promoting and cytokine-suppressing abilities. Therefore, NDV infection produces exosomes, which transfer viral NP protein and promote NDV infection, emphasizing the importance of exosomes in an NDV infection.


Assuntos
Exossomos/metabolismo , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/patogenicidade , Estruturas Virais/isolamento & purificação , Estruturas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Galinhas , Citocinas/metabolismo , Humanos , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Proteínas do Nucleocapsídeo , Nucleoproteínas/isolamento & purificação , Nucleoproteínas/metabolismo , Proteínas Recombinantes , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 30/genética , Tetraspanina 30/metabolismo , Proteínas Virais de Fusão/isolamento & purificação , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
7.
PLoS Comput Biol ; 14(8): e1006408, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30161121

RESUMO

The spikes on virus surfaces bind receptors on host cells to propagate infection. High spike densities (SDs) can promote infection, but spikes are also targets of antibody-mediated immune responses. Thus, diverse evolutionary pressures can influence virus SDs. HIV's SD is about two orders of magnitude lower than that of other viruses, a surprising feature of unknown origin. By modeling antibody evolution through affinity maturation, we find that an intermediate SD maximizes the affinity of generated antibodies. We argue that this leads most viruses to evolve high SDs. T helper cells, which are depleted during early HIV infection, play a key role in antibody evolution. We find that T helper cell depletion results in high affinity antibodies when SD is high, but not if SD is low. This special feature of HIV infection may have led to the evolution of a low SD to avoid potent immune responses early in infection.


Assuntos
Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Anticorpos Neutralizantes/imunologia , HIV/patogenicidade , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/fisiologia , Infecções por HIV/virologia , Humanos , Linfócitos T Auxiliares-Indutores/imunologia , Estruturas Virais/imunologia , Estruturas Virais/fisiologia
8.
Rev Med Virol ; 28(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316047

RESUMO

Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative-sense, nonsegmented, single-stranded RNA virus belonging to the Paramyxoviridae family. Parainfluenza virus 5 is an excellent viral vector and has been used as a live vaccine for kennel cough for many years in dogs without any safety concern. It can grow to high titers in many cell types, and its genome is stable even in the presence of foreign gene insertions. So far, PIV5 has been used to develop vaccines against influenza virus, respiratory syncytial virus, rabies virus, and Mycobacterium tuberculosis, demonstrating its ability to elicit robust and protective immune responses in preclinical animal models. Parainfluenza virus 5-based vaccines can be administered intranasally, intramuscularly, or orally. Interestingly, prior exposure of PIV5 does not prevent a PIV5-vectored vaccine from generating robust immunity, indicating that the vector can be used more than once. Here, these encouraging results are reviewed together along with discussion of the desirable advantages of the PIV5 vaccine vector to aid future vaccine design and to accelerate progression of PIV5-based vaccines into clinical trials.


Assuntos
Doenças dos Animais/prevenção & controle , Controle de Doenças Transmissíveis , Doenças Transmissíveis/imunologia , Vetores Genéticos , Vírus da Parainfluenza 5 , Vacinas/imunologia , Doenças dos Animais/etiologia , Animais , Controle de Doenças Transmissíveis/métodos , Expressão Gênica , Engenharia Genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunidade , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/imunologia , Vacinas/administração & dosagem , Estruturas Virais , Replicação Viral
9.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077635

RESUMO

Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses.IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.


Assuntos
Dicistroviridae/ultraestrutura , Vírion/ultraestrutura , Animais , Abelhas/virologia , Proteínas do Capsídeo/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Estruturas Virais
10.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424284

RESUMO

Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated.IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae."


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Sulfolobus/virologia , Estruturas Virais , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica , Fases de Leitura Aberta , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Vírion/química , Vírion/ultraestrutura
11.
J Gen Virol ; 98(6): 1161-1162, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635587

RESUMO

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Plantas/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Estruturas Virais
12.
J Virol ; 90(16): 7444-7455, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279610

RESUMO

UNLABELLED: The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 Å and 2.6 Å. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales The protruding (P) domains form "crowns" on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 Å toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV. IMPORTANCE: Pollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honeybee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding "crowns" on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.


Assuntos
Vírus de RNA/ultraestrutura , Estruturas Virais , Vírion/ultraestrutura , Animais , Abelhas/virologia , Capsídeo/ultraestrutura , Cristalografia por Raios X , Modelos Moleculares
13.
J Virol ; 90(17): 7628-39, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279624

RESUMO

UNLABELLED: In order to initiate an infection, viruses need to deliver their genomes into cells. This involves uncoating the genome and transporting it to the cytoplasm. The process of genome delivery is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the uncoating of the nonenveloped human cardiovirus Saffold virus 3 (SAFV-3) of the family Picornaviridae SAFVs cause diseases ranging from gastrointestinal disorders to meningitis. We present a structure of a native SAFV-3 virion determined to 2.5 Å by X-ray crystallography and an 11-Å-resolution cryo-electron microscopy reconstruction of an "altered" particle that is primed for genome release. The altered particles are expanded relative to the native virus and contain pores in the capsid that might serve as channels for the release of VP4 subunits, N termini of VP1, and the RNA genome. Unlike in the related enteroviruses, pores in SAFV-3 are located roughly between the icosahedral 3- and 5-fold axes at an interface formed by two VP1 and one VP3 subunit. Furthermore, in native conditions many cardioviruses contain a disulfide bond formed by cysteines that are separated by just one residue. The disulfide bond is located in a surface loop of VP3. We determined the structure of the SAFV-3 virion in which the disulfide bonds are reduced. Disruption of the bond had minimal effect on the structure of the loop, but it increased the stability and decreased the infectivity of the virus. Therefore, compounds specifically disrupting or binding to the disulfide bond might limit SAFV infection. IMPORTANCE: A capsid assembled from viral proteins protects the virus genome during transmission from one cell to another. However, when a virus enters a cell the virus genome has to be released from the capsid in order to initiate infection. This process is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the genome release of Human Saffold virus 3 Saffold viruses cause diseases ranging from gastrointestinal disorders to meningitis. We show that before the genome is released, the Saffold virus 3 particle expands, and holes form in the previously compact capsid. These holes serve as channels for the release of the genome and small capsid proteins VP4 that in related enteroviruses facilitate subsequent transport of the virus genome into the cell cytoplasm.


Assuntos
Cardiovirus/fisiologia , Cardiovirus/ultraestrutura , Estruturas Virais , Desenvelopamento do Vírus , Cardiovirus/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador
14.
J Virol ; 90(18): 8150-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384649

RESUMO

UNLABELLED: The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 Å and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 Å. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll ß-barrel folds composed of only seven instead of eight ß-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds. IMPORTANCE: Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.


Assuntos
Abelhas/virologia , Proteínas do Capsídeo/química , Dicistroviridae/ultraestrutura , Estruturas Virais , Vírion/ultraestrutura , Animais , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
15.
Pak J Pharm Sci ; 27(4 Suppl): 1001-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25016258

RESUMO

Most viruses have RNA genomes, their biological functions are expressed more by folded architecture than by sequence. Among the various RNA structures, pseudoknots are the most typical. In general, RNA secondary structures prediction doesn't contain pseudoknots because of its difficulty in modeling. Here we present an algorithm of dynamic matching to predict RNA secondary structures with pseudoknots by combining the merits of comparative and thermodynamic approaches. We have tested and verified our algorithm on some viral RNA. Comparisons show that our algorithm and loop matching method has similar accuracy and time complexity, and are more sensitive than the maximum weighted matching method and Rivas algorithm. Among the four methods, our algorithm has the best prediction specificity. The results show that our algorithm is more reliable and efficient than the other methods.


Assuntos
Algoritmos , RNA Viral/química , Sequência de Bases , Conformação de Ácido Nucleico , Estruturas Virais
16.
Prog Mol Biol Transl Sci ; 202: 1-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38237982

RESUMO

This book chapter presents a concise overview of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. It explores viral classification based on morphology and nucleic acid composition with a focus on DNA and RNA viruses, the SARS-CoV-2 structure including the structural as well as nonstructural proteins in detail, and the viral replication mechanisms. The chapter then delves into the characteristics and diversity of coronaviruses, particularly SARS-CoV-2, highlighting its similarities with other beta-coronaviruses. The replication and transcription complex, RNA elongation, and capping, as well as the role of accessory proteins in viral replication and modulation of the host immune response is discussed extensively.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , COVID-19/metabolismo , Pandemias , Estágios do Ciclo de Vida , Estruturas Virais/metabolismo
17.
J Biol Chem ; 287(10): 7640-51, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22235118

RESUMO

Many viruses use a pH-dependent pathway for fusion with host cell membrane, the mechanism of which is still poorly understood. Here we report that a subtle leucine (Leu)-valine (Val) change at position 501 in the envelope glycoproteins (Envs) of two related retroviruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV), is responsible for their distinct low pH requirements for membrane fusion and infection. The Leu and Val residues are predicted to reside within the C-terminal heptad repeat (HR2) region of JSRV and ENTV Envs, particularly proximal to the hairpin turn of the putative six-helix bundle (6HB). Substitution of the JSRV Leu with a Val blocked the Env-mediated membrane fusion at pH 5.0, whereas replacement of the ENTV Val with a Leu rendered the ENTV Env capable of fusing at pH 5.0. A Leu-Val change has no apparent effect on the stability of native Env, but appears to stabilize an intermediate induced by receptor binding. These results are consistent with the existence of at least two metastable conformations of these viral glycoproteins, the native prefusion conformation and a receptor-induced metastable intermediate. Collectively, this work represents an interesting perhaps unique example whereby a simple Leu-Val change has critical impact on pH-dependent virus fusion and entry.


Assuntos
Substituição de Aminoácidos , Produtos do Gene env/metabolismo , Retrovirus Jaagsiekte de Ovinos/metabolismo , Fusão de Membrana , Estruturas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Produtos do Gene env/genética , Humanos , Concentração de Íons de Hidrogênio , Retrovirus Jaagsiekte de Ovinos/genética , Ovinos , Estruturas Virais/genética
18.
Mol Microbiol ; 83(6): 1244-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22364412

RESUMO

Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event.


Assuntos
Bacteriófago P22/metabolismo , DNA Viral/metabolismo , Lipopolissacarídeos/metabolismo , Receptores Virais/metabolismo , Fagos de Salmonella/metabolismo , Salmonella typhimurium/virologia , Proteínas da Cauda Viral/metabolismo , Bacteriófago P22/química , Bacteriófago P22/genética , Caliciviridae/química , Caliciviridae/genética , Caliciviridae/metabolismo , DNA Viral/genética , Ligação Proteica , Fagos de Salmonella/química , Fagos de Salmonella/genética , Salmonella typhimurium/metabolismo , Estruturas Virais/química , Estruturas Virais/genética , Estruturas Virais/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética
19.
J Chem Theory Comput ; 19(11): 3025-3036, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192279

RESUMO

Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.


Assuntos
Simulação de Dinâmica Molecular , Estruturas Virais , Animais , Humanos
20.
Structure ; 31(11): 1348-1359, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797619

RESUMO

Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.


Assuntos
Vírus , Microscopia Crioeletrônica/métodos , Vírus/química , Estruturas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA