Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0028624, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624196

RESUMO

Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.


Assuntos
Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/fisiologia , Bacteriófagos/fisiologia , Temperatura Alta , Fagos de Pseudomonas/fisiologia , Fagos de Pseudomonas/crescimento & desenvolvimento , Características de História de Vida , Temperatura
2.
RNA Biol ; 18(8): 1099-1110, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33103565

RESUMO

As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions.


Assuntos
Antibiose/genética , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virologia , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Transcriptoma
3.
Mol Microbiol ; 111(2): 495-513, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30475408

RESUMO

Pf filamentous prophages are prevalent among clinical and environmental Pseudomonas aeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis-lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5'-untranslated regions overlap. XisF4 and Pf4r not only auto-activate their own expression but also repress each other. Furthermore, two H-NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Lisogenia , Prófagos/enzimologia , Prófagos/crescimento & desenvolvimento , Fagos de Pseudomonas/enzimologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/metabolismo , Replicação Viral , Regulação Viral da Expressão Gênica , Prófagos/genética , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/crescimento & desenvolvimento
4.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31451543

RESUMO

We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Assuntos
Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Antibacterianos/farmacologia , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/genética , Flagelos/efeitos dos fármacos , Flagelos/genética , Viabilidade Microbiana/efeitos dos fármacos , Movimento/fisiologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Quinolonas/farmacologia , Transdução de Sinais , Estresse Fisiológico
5.
Appl Microbiol Biotechnol ; 101(21): 7977-7985, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28914348

RESUMO

The rise of antibiotic resistant bacteria is posing a serious threat to human health. For example, resistant strains of Pseudomonas aeruginosa have resulted in untreatable and potentially lethal infections in both cystic fibrosis and immunocompromised patients. Due to the growing need for alternative treatment options, bacteriophage, or phage, therapy is gaining considerable attention. While previous studies have demonstrated the effectiveness of phage in combating persistent bacterial infections, there is currently a lack of knowledge regarding the host immunological response following phage exposure. In the present study, the bioresponses of an enhanced in vitro model were characterized following exposure to either DMS3 or PEV2, P. aeruginosa targeting phages. Results demonstrated a PEV2-dependent increase in IL-6 and TNF-α production, but no changes associated with DMS3 exposure. Additionally, following the establishment of an in vitro infection model, DMS3 was found to successfully protect mammalian lung cells from P. aeruginosa. Taken together, the biocompatibility and antibacterial effectiveness distinguish DMS3 bacteriophage as a strong candidate for phage therapy. However, as DMS3 is pilin dependent and bacterial receptor expression varies significantly, this work highlights the necessity of generating phage cocktails.


Assuntos
Terapia por Fagos/métodos , Pneumonia/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/imunologia , Pseudomonas aeruginosa/virologia , Células A549 , Humanos , Imunidade Inata , Interleucina-6/metabolismo , Modelos Biológicos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
6.
Can J Microbiol ; 63(2): 110-118, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28001438

RESUMO

Wetlands are often called the "kidneys of the Earth" and contribute substantially to environmental improvement. Pseudomonas fluorescens is a major contaminant of milk products and causes the spoilage of refrigerated foods and fresh poultry. In this study, we isolated and characterized a lytic cold-active bacteriophage named VSW-3 together with P. fluorescens SW-3 cells from the Napahai wetland in China. Electron microscopy showed that VSW-3 had an icosahedral head (56 nm) and a tapering tail (20 nm × 12 nm) and a genome size of approximate 40 kb. On the basis of the top-scoring hits in the BLASTP analysis, VSW-3 showed a high degree of module similarity to the Pseudomonas phages Andromeda and Bf7. The latent and burst periods were 45 and 20 min, respectively, with an average burst size of 90 phage particles per infected cell. The pH and thermal stability of VSW-3 were also explored. The optimal pH was found to be 7.0 and the activity decreased rapidly when the temperature exceeded 60 °C. VSW-3 is a cold-active bacteriophage, hence, it is important to research its ability to prevent product contamination caused by P. fluorescens and to characterize its relationship with its host P. fluorescens in the future.


Assuntos
Podoviridae/isolamento & purificação , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas fluorescens/virologia , Temperatura Baixa , Podoviridae/crescimento & desenvolvimento , Fagos de Pseudomonas/crescimento & desenvolvimento , Áreas Alagadas
7.
J Basic Microbiol ; 57(2): 162-170, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27714824

RESUMO

Bacterial growth phase has been reported affecting phage infection. To underpin the related mechanism, infection efficiency of Pseudomonas aeruginosa phage K5 is characterized. When infecting the logarithmic cells, phage K5 produced significantly more infection centers than the stationary cells, well concordant with the viable cell ratio in the different growth phases. Additionally, the burst size decreased dramatically in the stationary cells, implying that the physiological state of the viable cells contributed to the productivity of phage K5, and it was consistent with the expression variation of the phage RNA polymerase. Quorum sensing inhibitor penicillic acid was applied and could significantly improve the viable cell proportion and the infection center numbers, but had less effect on the corresponding burst sizes. Moreover, the effect of penicillic acid and the quorum sensing regulator mutants on the production of phage C11 was also analyzed. Taken together, our data suggest that quorum sensing is involved in the defense of phage K5 infection by influencing the viable cell population and their physiological state, and it is an efficient and intrinsic pathway allowing bacteria to resist phage attacks in natural environment.


Assuntos
Interações Hospedeiro-Parasita , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Percepção de Quorum
8.
Prikl Biokhim Mikrobiol ; 52(3): 312-7, 2016.
Artigo em Russo | MEDLINE | ID: mdl-29509387

RESUMO

The effects of two Pseudomonas aeruginosa bacteriophages, vB-Pa 4 and vB-Pa 5, on the formation and development of biofilms of six polyresistant hospital strains of P. aeruginosa have been investigated. Pretreatment of bacteriophages prevented the formation or almost completely prevented the growth of adequate biofilms. The biofilms that had already formed were partially or completely destroyed after phage treatment. The results demonstrate the prospects of using isolated bacteriophages of P. aeruginosa to destroy biofilms and prevent their formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia
9.
J Virol ; 88(18): 10501-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965474

RESUMO

UNLABELLED: Pseudomonas aeruginosa bacteriophage ϕKZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ∼ 280-kb ϕKZ genome to single-nucleotide resolution, we combine 369 ϕKZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the ϕKZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to ϕKZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the ϕKZ genome is performed by the consecutive action of two ϕKZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCE: The data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage ϕKZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial ß and ß'-like RNAP subunits.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Viral da Expressão Gênica , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Bacteriófagos/enzimologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Interações Hospedeiro-Patógeno , Fagos de Pseudomonas/enzimologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
10.
Cell Microbiol ; 16(12): 1822-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25059764

RESUMO

Immediately after infection, virulent bacteriophages hijack the molecular machinery of their bacterial host to create an optimal climate for phage propagation. For the vast majority of known phages, it is completely unknown which bacterial functions are inhibited or coopted. Early expressed phage genome regions are rarely identified, and often filled with small genes with no homology in databases (so-called ORFans). In this work, we first analysed the temporal transcription pattern of the N4-like Pseudomonas-infecting phages and selected 26 unknown, early phage ORFans. By expressing their encoded proteins individually in the host bacterium Pseudomonas aeruginosa, we identified and further characterized six antibacterial early phage proteins using time-lapse microscopy, radioactive labelling and pull-down experiments. Yeast two-hybrid analysis gaveclues to their possible role in phage infection. Specifically, we show that the inhibitory proteins may interact with transcriptional regulator PA0120, the replicative DNA helicase DnaB, the riboflavin metabolism key enzyme RibB, the ATPase PA0657and the spermidine acetyltransferase PA4114. The dependency of phage infection on spermidine was shown in a final experiment. In the future, knowledge of how phages shut down their hosts as well ass novel phage-host interaction partners could be very valuable in the identification of novel antibacterial targets.


Assuntos
Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Fases de Leitura Aberta , Ligação Proteica , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética
11.
Appl Microbiol Biotechnol ; 99(14): 6021-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25758956

RESUMO

The goal of the study was to determine the relationship between in vitro/in vivo efficacy of environmental Pseudomonas phages and certain phenotypical properties of Pseudomonas aeruginosa (PA) strains. We studied the diversity between particular isolates and determined phage sensitivity in vitro and in vivo in the Galleria mellonella insect model. Twenty-eight lytic bacteriophages specific for PA were tested against 121 CF PA isolates including 29 mucoid PA strains. Most strains from cystic fibrosis (CF) patients were lysed by at least three phages (93.6 %), but completely insensitive strains were also present (6.4 %). Two phages PA5oct and KT28 exhibited high rates of lytic potency on 55-68 % of PA strains (72-86 % of mucoid isolates). We further explored phage activity against six PA strains (CF and non-CF) in vitro, comparing clonal differences in phage susceptibility with bacterial properties such as the ability to form biofilms, mucosity, twitching motility, and biochemical profiles. We observed the relationship between variation in phage susceptibility and Fourier transform infrared spectroscopy (FTIR) analysis in the spectra window of carbohydrates. The protective efficacy of two selected phages against PA PAO1 and 0038 infection was confirmed in vivo in G. mellonella larvae. Generally, the wax moth model results confirmed the data from in vitro assays, but in massive infection of CF isolates, the application of lytic phages probably led to the release of toxic compound causing an increase in larvae mortality. We assumed that apart of in vitro phage activity testing, a simple and convenient wax moth larvae model should be applied for the evaluation of in vivo effectiveness of particular phage preparations.


Assuntos
Bacteriólise , Fibrose Cística/complicações , Viabilidade Microbiana , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/virologia , Animais , Terapia Biológica/métodos , Humanos , Larva/microbiologia , Larva/fisiologia , Lepidópteros/microbiologia , Pseudomonas aeruginosa/fisiologia , Análise de Sobrevida
12.
Curr Microbiol ; 70(6): 786-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25691338

RESUMO

In this study, two lytic phages designated as ϕPSZ1 and ϕPSZ2 infecting multidrug resistant Pseudomonas aeruginosa were isolated from sewage samples collected in Zagazig, Egypt. Morphological analysis by transmission electron microscopy revealed that both phages belong to the podoviridae family and resembles typical T7-like phages. ϕPSZ1 has a head of about 60 ± 5 nm in diameter with a short tail of 19 ± 2 nm in length, while ϕPSZ2 has a head of about 57 ± 5 nm in diameter with a short tail of 14 ± 2 nm in length. Both phages were shown to be able to infect 13 different P. aeruginosa strains and has no effect on other tested bacteria. In spite of morphological similarity, these phages showed diverged genomic sequences revealed by restriction enzyme digestion analysis. One-step growth curves of bacteriophages revealed eclipse and latent periods of 12 min for ϕPSZ1 and 15 min for ϕPSZ2, respectively, with burst sizes of about 100 per infected cell. Phage treatment prevented the growth of P. aeruginosa for up to 18 h with multiplicity of infection ratios of 1. These results suggest that both phages have a high potential for phage application to control P. aeruginosa.


Assuntos
Farmacorresistência Bacteriana Múltipla , Podoviridae/isolamento & purificação , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Bacteriólise , DNA Viral/genética , Egito , Variação Genética , Microscopia Eletrônica de Transmissão , Podoviridae/crescimento & desenvolvimento , Podoviridae/ultraestrutura , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/ultraestrutura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Mapeamento por Restrição , Esgotos/virologia , Vírion/ultraestrutura
13.
Arch Virol ; 159(3): 567-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24072472

RESUMO

A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.


Assuntos
Fagos de Pseudomonas/genética , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas/virologia , Clorofórmio , DNA Viral/genética , Eletroforese em Gel de Campo Pulsado , Temperatura Alta , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microscopia Eletrônica , Myoviridae/genética , Myoviridae/crescimento & desenvolvimento , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Polônia , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/ultraestrutura , Esgotos/virologia , Inativação de Vírus
14.
J Basic Microbiol ; 54(11): 1210-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24810619

RESUMO

The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker of kiwifruit. In the last years, it has caused severe economic losses to Actinidia spp. cultivations, mainly in Italy and New Zealand. Conventional strategies adopted did not provide adequate control of infection. Phage therapy may be a realistic and safe answer to the urgent need for novel antibacterial agents aiming to control this bacterial pathogen. In this study, we described the isolation and characterization of two bacteriophages able to specifically infect Psa. φPSA1, a member of the Siphoviridae family, is a temperate phage with a narrow host range, a long latency, and a burst size of 178; φPSA2 is a lytic phage of Podoviridae family with a broader host range, a short latency, a burst size of 92 and a higher bactericidal activity as determined by the TOD value. The genomic sequence of φPSA1 has a length of 51,090 bp and a low sequence homology with the other siphophages, whereas φPSA2 has a length of 40 472 bp with a 98% homology with Pseudomonas putida bacteriophage gh-1. Of the two phages examined, φPSA2 may be considered as a candidate for phage therapy of kiwifruit disease, while φPSA1 seems specific toward the recent outbreak's isolates and could be useful for Psa typing.


Assuntos
Actinidia/microbiologia , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas syringae/virologia , Bacteriólise , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Itália , Lisogenia , Viabilidade Microbiana , Dados de Sequência Molecular , Nova Zelândia , Doenças das Plantas/microbiologia , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/fisiologia , Análise de Sequência de DNA , Homologia de Sequência , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia
15.
Antimicrob Agents Chemother ; 57(12): 5961-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041900

RESUMO

The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment.


Assuntos
Terapias Complementares/métodos , Pneumonia Bacteriana/terapia , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Animais , Bioensaio , Modelos Animais de Doenças , Genes Reporter , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/microbiologia , Valor Preditivo dos Testes , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/patogenicidade , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Resultado do Tratamento , Ensaio de Placa Viral
16.
J Bacteriol ; 194(21): 5728-38, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22885297

RESUMO

Here we report the isolation of 6 temperate bacteriophages (phages) that are prevented from replicating within the laboratory strain Pseudomonas aeruginosa PA14 by the endogenous CRISPR/Cas system of this microbe. These phages are only the second identified group of naturally occurring phages demonstrated to be blocked for replication by a nonengineered CRISPR/Cas system, and our results provide the first evidence that the P. aeruginosa type I-F CRISPR/Cas system can function in phage resistance. Previous studies have highlighted the importance of the protospacer adjacent motif (PAM) and a proximal 8-nucleotide seed sequence in mediating CRISPR/Cas-based immunity. Through engineering of a protospacer region of phage DMS3 to make it a target of resistance by the CRISPR/Cas system and screening for mutants that escape CRISPR/Cas-mediated resistance, we show that nucleotides within the PAM and seed sequence and across the non-seed-sequence regions are critical for the functioning of this CRISPR/Cas system. We also demonstrate that P. aeruginosa can acquire spacer content in response to lytic phage challenge, illustrating the adaptive nature of this CRISPR/Cas system. Finally, we demonstrate that the P. aeruginosa CRISPR/Cas system mediates a gradient of resistance to a phage based on the level of complementarity between CRISPR spacer RNA and phage protospacer target. This work introduces a new in vivo system to study CRISPR/Cas-mediated resistance and an additional set of tools for the elucidation of CRISPR/Cas function.


Assuntos
Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Recombinação Genética , Replicação Viral , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA
17.
Mol Microbiol ; 81(3): 767-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21696457

RESUMO

Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracellular (e)DNA, with eDNA required for biofilm formation and integrity. Here we demonstrate that eDNA release is controlled by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. Expression of bfmR coincided with localized cell death and DNA release, and could be stimulated by conditions resulting in membrane perturbation and cell lysis. ΔbfmR mutant biofilms demonstrated increased cell lysis and eDNA release suggesting BfmR to suppress, but not eliminate, these processes. Genome-wide transcriptional profiling indicated that BfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. Chromatin immunoprecipitation analysis of direct BfmR targets identified the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development and increased cell death, a phenotype comparable to ΔbfmR. Expression of phdA in ΔbfmR restored eDNA release, cell lysis and biofilm formation to wild-type levels, with phdA overexpression promoting resistance to the superinfective bacteriophage Pf4, detected only in biofilms. Therefore, we propose that BfmR regulates biofilm development by limiting bacteriophage-mediated lysis and thus, eDNA release, via PhdA.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Imunoprecipitação da Cromatina , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Alinhamento de Sequência , Ensaio de Placa Viral
18.
Appl Environ Microbiol ; 78(16): 5646-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22660719

RESUMO

Interest in using bacteriophages to treat bacterial infections (phage therapy) is growing, but there have been few experiments comparing the effects of different treatment strategies on both bacterial densities and resistance evolution. While it is established that multiphage therapy is typically more effective than the application of a single phage type, it is not clear if it is best to apply phages simultaneously or sequentially. We tried single- and multiphage therapy against Pseudomonas aeruginosa PAO1 in vitro, using different combinations of phages either simultaneously or sequentially. Across different phage combinations, simultaneous application was consistently equal or superior to sequential application in terms of reducing bacterial population density, and there was no difference (on average) in terms of minimizing resistance. Phage-resistant bacteria emerged in all experimental treatments and incurred significant fitness costs, expressed as reduced growth rate in the absence of phages. Finally, phage therapy increased the life span of wax moth larvae infected with P. aeruginosa, and a phage cocktail was the most effective short-term treatment. When the ratio of phages to bacteria was very high, phage cocktails cured otherwise lethal infections. These results suggest that while adding all available phages simultaneously tends to be the most successful short-term strategy, there are sequential strategies that are equally effective and potentially better over longer time scales.


Assuntos
Terapia Biológica/métodos , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Animais , Modelos Animais de Doenças , Larva/microbiologia , Mariposas/microbiologia , Análise de Sobrevida
19.
Appl Environ Microbiol ; 78(17): 6380-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22752161

RESUMO

We isolated a new lytic Pseudomonas aeruginosa phage that requires type IV pili for infection. PA1Ø has a broad bactericidal spectrum, covering Gram-positive and Gram-negative bacteria, and can eradicate biofilm cells. PA1Ø may be developed as a therapeutic agent for biofilm-related mixed infections with P. aeruginosa and Staphylococcus aureus.


Assuntos
Bacteriólise , Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Internalização do Vírus , Terapia Biológica/métodos , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/crescimento & desenvolvimento
20.
BMC Microbiol ; 12: 127, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747634

RESUMO

BACKGROUND: Bacteriophages have the destructive damage on the industrial bioprocess. 2-Keto-gluconic acid (2KGA) producing bacteria had also been attacked and lysed by bacteriophages which lowered the glucose consumption and 2KGA yield and even stopped the fermentation process. In this study, we presented the characteristics of a novel virulent bacteriophage specifically infecting Pseudomonas fluorescens K1005 and proposed an efficient remedial action for this phage infection to reduce the production loss. RESULTS: The phage KSL-1 of Pseudomonas fluorescens K1005 was isolated from abnormal 2KGA fermentation broth. It belonged to the Siphoviridae family with a hexagonal head diameter of about 99 nm and a non-contractile tail of about 103 nm × 39 nm. The genome size of phage KSL-1 was estimated to be approximately 53 kbp. Its optimal MOI to infect P. fluorescens K1005 was about 0.001. One-step growth curve gave its latent and burst periods of 90 min and 75 min with a burst size of 52 phage particles per infected cell. This phage was stable with a pH range of 7.0-10.0, and sensitive to thermal treatment. Finally, a simple remedial action was proposed by feeding fresh seed culture. Compared with the infected 2KGA fermentation, the remedial experiments restored 2KGA fermentation performance by increasing the produced 2KGA concentration to 159.89 g/L and shortening the total fermentation time of 80 h with the productivity and yield of 2.0 g/L.h and 0.89 g/g. The obtained data proved that this method was effective to combat the phage infections problems during the 2KGA fermentation. CONCLUSION: The phage KSL-1 was a novel bacteriophage specifically infecting Pseudomonas fluorescens K1005. The remedial action of feeding fresh seed culture to the infected broth was an easily-operating and effective method to maintain a high 2KGA yield and avoid the draft of infected broth.


Assuntos
Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Pseudomonas fluorescens/virologia , Genoma Viral , Gluconatos/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fagos de Pseudomonas/efeitos dos fármacos , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Temperatura , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA