Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625989

RESUMO

Staphylococcus aureus is the main pathogen that causes skin and skin structure infections and is able to survive and persist in keratinocytes of the epidermis. Since the evolution of multidrug-resistant bacteria, the use of phages and their lysins has presented a promising alternative approach to treatment. In this study, a cell wall hydrolase (also called lysin) derived from Staphylococcus phage JD007 (JDlys) was identified. JDlys showed strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA) strains from different sources and of different multilocus sequence typing (MLST) types. Furthermore, a fusion protein consisting of a cell-penetrating peptide derived from the trans-activating transcription (Tat) factor fused to JDlys (CPPTat-JDlys) was used to kill MRSA bacteria causing intracellular infections. CPPTat-JDlys, in which the fusion of CPPTat to JDlys had almost no effect on the bacteriolytic activity of JDlys, was able to effectively eliminate intracellular MRSA bacteria and alleviate the inflammatory response and cell damage caused by MRSA. Specifically, CPPTat-JDlys was able to combat MRSA-induced murine skin infections and, consequently, expedite the healing of cutaneous abscesses. These data suggest that the novel antimicrobial CPP-JDlys may be a worthwhile candidate as a treatment for skin and skin structure infections caused by MRSA.IMPORTANCES. aureus is the main cause of skin and skin structure infections due to its ability to invade and survive in the epithelial barrier. Due to the overuse of antibiotics in humans and animals, S. aureus has shown a high capacity for acquiring and accumulating mechanisms of resistance to antibiotics. Moreover, most antibiotics are usually limited in their ability to overcome the intracellular persistence of bacteria causing skin and skin structure infections. So, it is critical to seek a novel antimicrobial agent to eradicate intracellular S. aureus In this study, a cell-penetrating peptide fused to lysin (CPP-JDlys) was engineered. Our results show that CPP-JDlys can enter keratinocytes and effectively eliminate intracellular MRSA. Meanwhile, experiments with mice revealed that CPP-JDlys efficiently inhibits the proliferation of MRSA in murine skin and thus shortens the course of wound healing. Our results indicate that the CPP-fused lysin has potential for use for the treatment of skin infections caused by MRSA.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Hidrolases/farmacologia , Queratinócitos/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Dermatopatias Bacterianas/tratamento farmacológico , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética
2.
Appl Microbiol Biotechnol ; 101(1): 147-158, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27498125

RESUMO

Endolysin from Staphylococcus aureus phage SA97 (LysSA97) was cloned and investigated. LysSA97 specifically lyse the staphylococcal strains and effectively disrupted staphylococcal biofilms. Bioinformatic analysis of LysSA97 revealed a novel putative cell wall binding domain (CBD) as well as two enzymatically active domains (EADs) containing cysteine, histidine-dependent amidohydrolases/peptidases (CHAP, PF05257) and N-acetylmuramoyl-L-alanine amidase (Amidase-3, PF01520) domains. Comparison of 98 endolysin genes of S. aureus phages deposited in GenBank showed that they can be classified into six groups based on their domain composition. Interestingly, approximately 80.61 % of the staphylococcal endolysins have a src-homology 3 (SH3, PF08460) domain as CBD, but the remaining 19.39 %, including LysSA97, has a putative C-terminal CBD with no homology to the known CBD. The fusion protein containing green fluorescent protein and the putative CBD of LysSA97 showed a specific binding spectrum against staphylococcal cells comparable to SH3 domain (PF08460), suggesting that the C-terminal domain of LysSA97 is a novel CBD of staphylococcal endolysins.


Assuntos
Parede Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Clonagem Molecular , Biologia Computacional , Ligação Proteica , Domínios Proteicos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
3.
Food Microbiol ; 68: 112-120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800818

RESUMO

Here we show that the LysSA11 endolysin, derived from the virulent Staphylococcus aureus phage SA11, has lytic activity against staphylococcal strains. Bioinformatics analysis revealed an enzymatically active CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) domain at the N-terminus of LysSA11 that showed amidase activity. A novel cell wall binding domain (CBD) in the C-terminus could bind to a broad spectrum of staphylococcal cells. The bactericidal activity of LysSA11 was determined in food and utensils artificially contaminated with methicillin-resistant S. aureus (MRSA). The amounts of MRSA bacteria in milk and on ham were significantly reduced by 1.44-log CFU/mL and 3.12-log CFU/cm3, respectively, within 15 min at refrigeration temperature (4 °C) and by 2.02-log CFU/mL and 3.37-log CFU/cm2, respectively, within 15 min at room temperature (25 °C). Moreover, a polypropylene plastic cutting board and a stainless steel knife artificially contaminated with approximately 4-log CFU/cm2 of MRSA also showed complete bacterial elimination after a 30-min treatment with 1.35 µM of LysSA11. The data presented here strongly suggest that the novel CBD-containing staphylococcal endolysin LysSA11 can be used both as a food antimicrobial and as a practical sanitizer for utensils.


Assuntos
Antibacterianos/farmacologia , Endopeptidases/farmacologia , Fagos de Staphylococcus/química , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Proteínas Virais/farmacologia , Utensílios de Alimentação e Culinária , Endopeptidases/metabolismo , Microbiologia de Alimentos , Aço Inoxidável/análise , Staphylococcus aureus/crescimento & desenvolvimento , Proteínas Virais/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(16): 6016-21, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711396

RESUMO

Staphylococcal pathogenicity islands (SaPIs) are the prototypical members of a widespread family of chromosomally located mobile genetic elements that contribute substantially to intra- and interspecies gene transfer, host adaptation, and virulence. The key feature of their mobility is the induction of SaPI excision and replication by certain helper phages and their efficient encapsidation into phage-like infectious particles. Most SaPIs use the headful packaging mechanism and encode small terminase subunit (TerS) homologs that recognize the SaPI-specific pac site and determine SaPI packaging specificity. Several of the known SaPIs do not encode a recognizable TerS homolog but are nevertheless packaged efficiently by helper phages and transferred at high frequencies. In this report, we have characterized one of the non-terS-coding SaPIs, SaPIbov5, and found that it uses two different, undescribed packaging strategies. SaPIbov5 is packaged in full-sized phage-like particles either by typical pac-type helper phages, or by cos-type phages--i.e., it has both pac and cos sites--a configuration that has not hitherto been described for any mobile element, phages included--and uses the two different phage-coded TerSs. To our knowledge, this is the first example of SaPI packaging by a cos phage, and in this, it resembles the P4 plasmid of Escherichia coli. Cos-site packaging in Staphylococcus aureus is additionally unique in that it requires the HNH nuclease, carried only by cos phages, in addition to the large terminase subunit, for cos-site cleavage and melting.


Assuntos
Sítios de Ligação Microbiológicos/genética , Empacotamento do DNA , Endonucleases/metabolismo , Ilhas Genômicas/genética , Fagos de Staphylococcus/enzimologia , Staphylococcus/genética , Staphylococcus/virologia , Replicação do DNA , Mutação/genética , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestrutura , Proteínas Virais/metabolismo , Montagem de Vírus
5.
PLoS Pathog ; 10(5): e1004109, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24831957

RESUMO

The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an "EF-hand-like" calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.


Assuntos
Cálcio/metabolismo , Mucoproteínas/química , Mucoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fagos de Staphylococcus/enzimologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Mucoproteínas/farmacologia , Homologia de Sequência de Aminoácidos
6.
Appl Environ Microbiol ; 82(1): 87-94, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475103

RESUMO

Pneumonia is one of the most prevalent Staphylococcus aureus-mediated diseases, and the treatment of this infection is becoming challenging due to the emergence of multidrug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA) strains. It has been reported that LysGH15, the lysin derived from phage GH15, displays high efficiency and a broad lytic spectrum against MRSA and that apigenin can markedly diminish the alpha-hemolysin of S. aureus. In this study, the combination therapy of LysGH15 and apigenin was evaluated in vitro and in a mouse S. aureus pneumonia model. No mutual adverse influence was detected between LysGH15 and apigenin in vitro. In animal experiments, the combination therapy showed a more effective treatment effect than LysGH15 or apigenin monotherapy (P < 0.05). The bacterial load in the lungs of mice administered the combination therapy was 1.5 log units within 24 h after challenge, whereas the loads in unprotected mice or mice treated with apigenin or LysGH15 alone were 10.2, 4.7, and 2.6 log units, respectively. The combination therapy group showed the best health status, the lowest ratio of wet tissue to dry tissue of the lungs, the smallest amount of total protein and cells in the lung, the fewest pathological manifestations, and the lowest cytokine level compared with the other groups (P < 0.05). With regard to its better protective efficacy, the combination therapy of LysGH15 and apigenin exhibits therapeutic potential for treating pneumonia caused by MRSA. This paper reports the combination therapy of lysin and natural products derived from traditional Chinese medicine.


Assuntos
Antibacterianos/administração & dosagem , Apigenina/administração & dosagem , Pneumonia/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Proteínas Virais/administração & dosagem , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/química , Staphylococcus aureus/fisiologia
7.
Nature ; 465(7299): 779-82, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20473284

RESUMO

Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of approximately 15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl-DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80alpha and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.


Assuntos
Ilhas Genômicas/genética , Vírus Auxiliares/enzimologia , Proteínas Repressoras/antagonistas & inibidores , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/genética , Regulação para Cima/genética , Proteínas Virais/metabolismo , Alelos , Sequência de Aminoácidos , DNA/biossíntese , DNA/genética , Replicação do DNA , Vírus Auxiliares/genética , Vírus Auxiliares/metabolismo , Vírus Auxiliares/fisiologia , Lisogenia/fisiologia , Dados de Sequência Molecular , Prófagos/metabolismo , Prófagos/fisiologia , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , Recombinação Genética/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Choque Séptico , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia , Superantígenos/genética , Proteínas Virais/química , Proteínas Virais/genética
8.
Microbiology (Reading) ; 160(Pt 10): 2157-2169, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023246

RESUMO

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other ß-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Assuntos
Parede Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Peptidoglicano/metabolismo , Fagos de Staphylococcus/enzimologia , Staphylococcus/efeitos dos fármacos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Sepse/microbiologia , Staphylococcus/crescimento & desenvolvimento , Staphylococcus/isolamento & purificação , Virulência
9.
Nature ; 451(7174): 94-7, 2008 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-18172503

RESUMO

The 'RNA world' hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter's domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts ('RNPzymes'). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNA(Tyr) and promotes the splicing of mitochondrial group I introns. Here we determine a 4.5-A co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNA(Tyr). This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.


Assuntos
Íntrons/genética , Neurospora crassa/enzimologia , Splicing de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Catalítico/química , RNA Catalítico/genética , RNA Catalítico/metabolismo , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2298-308, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311572

RESUMO

Genome integrity requires well controlled cellular pools of nucleotides. dUTPases are responsible for regulating cellular dUTP levels and providing dUMP for dTTP biosynthesis. In Staphylococcus, phage dUTPases are also suggested to be involved in a moonlighting function regulating the expression of pathogenicity-island genes. Staphylococcal phage trimeric dUTPase sequences include a specific insertion that is not found in other organisms. Here, a 2.1 Šresolution three-dimensional structure of a ϕ11 phage dUTPase trimer with complete localization of the phage-specific insert, which folds into a small ß-pleated mini-domain reaching out from the dUTPase core surface, is presented. The insert mini-domains jointly coordinate a single Mg2+ ion per trimer at the entrance to the threefold inner channel. Structural results provide an explanation for the role of Asp95, which is suggested to have functional significance in the moonlighting activity, as the metal-ion-coordinating moiety potentially involved in correct positioning of the insert. Enzyme-kinetics studies of wild-type and mutant constructs show that the insert has no major role in dUTP binding or cleavage and provide a description of the elementary steps (fast binding of substrate and release of products). In conclusion, the structural and kinetic data allow insights into both the phage-specific characteristics and the generally conserved traits of ϕ11 phage dUTPase.


Assuntos
Pirofosfatases/química , Pirofosfatases/metabolismo , Fagos de Staphylococcus/enzimologia , Sequência de Aminoácidos , Cátions Bivalentes/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Fagos de Staphylococcus/química , Staphylococcus aureus/virologia
11.
Appl Environ Microbiol ; 79(19): 6187-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892745

RESUMO

The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage 11, is not essential for phage growth but stabilizes the viral particles. 11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/crescimento & desenvolvimento , Staphylococcus aureus/virologia , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Bacteriólise , Deleção de Genes , Teste de Complementação Genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Fagos de Staphylococcus/genética , Proteínas Estruturais Virais/genética , Vírion/genética
12.
Appl Microbiol Biotechnol ; 97(8): 3449-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22777279

RESUMO

Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.


Assuntos
Códon de Iniciação , Endopeptidases/genética , Endopeptidases/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/virologia , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Deleção de Sequência , Fagos de Staphylococcus/genética
13.
Protein Sci ; 32(9): e4737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497650

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.


Assuntos
Proteínas de Bactérias , Proteínas e Peptídeos de Choque Frio , Endopeptidases , Proteínas de Choque Térmico , Staphylococcus aureus Resistente à Meticilina , Fagos de Staphylococcus , Humanos , Proteínas e Peptídeos de Choque Frio/química , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Staphylococcus aureus Resistente à Meticilina/virologia , Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Fagos de Staphylococcus/enzimologia
14.
Appl Environ Microbiol ; 78(7): 2241-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267667

RESUMO

Virion-associated peptidoglycan hydrolases have potential as antimicrobial agents due to their ability to lyse Gram-positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion-associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. Full-length HydH5 and two truncated derivatives containing only the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain exhibited high lytic activity against live S. aureus cells. In addition, three different fusion proteins were created between lysostaphin and HydH5, each of which showed higher staphylolytic activity than the parental enzyme or its deletion construct. Both parental and fusion proteins lysed S. aureus cells in zymograms and plate lysis and turbidity reduction assays. In plate lysis assays, HydH5 and its derivative fusions lysed bovine and human S. aureus strains, the methicillin-resistant S. aureus (MRSA) strain N315, and human Staphylococcus epidermidis strains. Several nonstaphylococcal bacteria were not affected. HydH5 and its derivative fusion proteins displayed antimicrobial synergy with the endolysin LysH5 in vitro, suggesting that the two enzymes have distinct cut sites and, thus, may be more efficient in combination for the elimination of staphylococcal infections.


Assuntos
Bacteriólise , Staphylococcus aureus Resistente à Meticilina/virologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus , Staphylococcus aureus/virologia , Staphylococcus epidermidis/virologia , Animais , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/terapia , Sinergismo Farmacológico , Endopeptidases/metabolismo , Deleção de Genes , Humanos , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Vírion/enzimologia
15.
J Clin Microbiol ; 49(1): 111-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21048011

RESUMO

Phage-coded lysin is an enzyme that destroys the cell walls of bacteria. Phage lysin could be an alternative to conventional antibiotic therapy against pathogens that are resistant to multiple antibiotics. In this study, a novel staphylococcal phage, GH15, was isolated, and the endogenous lytic enzyme (LysGH15) was expressed and purified. The lysin LysGH15 displayed a broad lytic spectrum; in vitro treatment killed a number of Staphylococcus aureus strains rapidly and completely, including methicillin-resistant S. aureus (MRSA). In animal experiments, a single intraperitoneal injection of LysGH15 (50 µg) administered 1 h after MRSA injections at double the minimum lethal dose was sufficient to protect mice (P < 0.01). Bacteremia in unprotected mice reached colony counts of about 10(7) CFU/ml within 3.5 h after challenge, whereas the mean colony count in lysin-protected mice was less than 10(4) CFU/ml (and ultimately became undetectable). These results indicate that LysGH15 can kill S. aureus in vitro and can protect mice efficiently from bacteremia in vivo. The phage lysin LysGH15 might be an alternative treatment strategy for infections caused by MRSA.


Assuntos
Bacteriemia/prevenção & controle , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mucoproteínas/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Fagos de Staphylococcus/enzimologia , Proteínas Virais/administração & dosagem , Animais , Bacteriemia/microbiologia , DNA Viral/química , DNA Viral/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Mucoproteínas/genética , Mucoproteínas/isolamento & purificação , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/isolamento & purificação , Análise de Sobrevida , Resultado do Tratamento , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
16.
BMC Microbiol ; 11: 195, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880144

RESUMO

BACKGROUND: Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. RESULTS: We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat) gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80). Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. CONCLUSIONS: A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host. The recombinant phage effectively rescued mice from fatal S. aureus infection. To our knowledge this is the first report of a lysis-deficient staphylococcal phage.


Assuntos
Terapia Biológica , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Liberação de Vírus , Animais , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Masculino , Camundongos , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética , Staphylococcus aureus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
BMC Microbiol ; 11: 138, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21682850

RESUMO

BACKGROUND: Staphylococcus aureus is a food-borne pathogen and the most common cause of infections in hospitalized patients. The increase in the resistance of this pathogen to antibacterials has made necessary the development of new anti-staphylococcal agents. In this context, bacteriophage lytic enzymes such as endolysins and structural peptidoglycan (PG) hydrolases have received considerable attention as possible antimicrobials against gram-positive bacteria. RESULTS: S. aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encoded by staphylococcal phages. The protein consists of 634 amino acid residues. Two putative lytic domains were identified: an N-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain (135 amino acid residues), and a C-terminal LYZ2 (lysozyme subfamily 2) domain (147 amino acid residues). These domains were also found when a predicted three-dimensional structure of HydH5 was made which provided the basis for deletion analysis. The complete HydH5 protein and truncated proteins containing only each catalytic domain were overproduced in E. coli and purified from inclusion bodies by subsequent refolding. Truncated and full-length HydH5 proteins were all able to bind and lyse S. aureus Sa9 cells as shown by binding assays, zymogram analyses and CFU reduction analysis. HydH5 demonstrated high antibiotic activity against early exponential cells, at 45°C and in the absence of divalent cations (Ca2+, Mg2+, Mn2+). Thermostability assays showed that HydH5 retained 72% of its activity after 5 min at 100°C. CONCLUSIONS: The virion-associated PG hydrolase HydH5 has lytic activity against S. aureus, which makes it attractive as antimicrobial for food biopreservation and anti-staphylococcal therapy.


Assuntos
Bacteriólise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Clonagem Molecular , Análise Mutacional de DNA , Escherichia coli/genética , Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia , Temperatura , Vírion/enzimologia , Vírion/genética
18.
BMC Microbiol ; 11: 226, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21985151

RESUMO

BACKGROUND: Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. However, the rapid emergence of antibiotic resistance limits the choice of therapeutic options for treating infections caused by this organism. Muralytic enzymes from bacteriophages have recently gained attention for their potential as antibacterial agents against antibiotic-resistant gram-positive organisms. Phage K is a polyvalent virulent phage of the Myoviridae family that is active against many Staphylococcus species. RESULTS: We identified a phage K gene, designated orf56, as encoding the phage tail-associated muralytic enzyme (TAME). The gene product (ORF56) contains a C-terminal domain corresponding to cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), which demonstrated muralytic activity on a staphylococcal cell wall substrate and was lethal to S. aureus cells. We constructed N-terminal truncated forms of ORF56 and arrived at a 16-kDa protein (Lys16) that retained antistaphylococcal activity. We then generated a chimeric gene construct encoding Lys16 and a staphylococcal cell wall-binding SH3b domain. This chimeric protein (P128) showed potent antistaphylococcal activity on global clinical isolates of S. aureus including methicillin-resistant strains. In addition, P128 was effective in decolonizing rat nares of S. aureus USA300 in an experimental model. CONCLUSIONS: We identified a phage K gene that encodes a protein associated with the phage tail structure. The muralytic activity of the phage K TAME was localized to the C-terminal CHAP domain. This potent antistaphylococcal TAME was combined with an efficient Staphylococcus-specific cell-wall targeting domain SH3b, resulting in the chimeric protein P128. This protein shows bactericidal activity against globally prevalent antibiotic resistant clinical isolates of S. aureus and against the genus Staphylococcus in general. In vivo, P128 was efficacious against methicillin-resistant S. aureus in a rat nasal colonization model.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Myoviridae/enzimologia , Infecções Estafilocócicas/tratamento farmacológico , Fagos de Staphylococcus/enzimologia , Proteínas da Cauda Viral/farmacologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Antibacterianos/metabolismo , Feminino , Humanos , Myoviridae/química , Myoviridae/genética , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/fisiologia , Fagos de Staphylococcus/química , Fagos de Staphylococcus/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1411-3, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102244

RESUMO

Staphylococcus aureus superantigen-carrying pathogenicity islands (SaPIs) play a determinant role in spreading virulence genes among bacterial populations that constitute a major health hazard. Repressor (Stl) proteins are responsible for the transcriptional regulation of pathogenicity island genes. Recently, a derepressing interaction between the repressor Stl SaPIbov1 and dUTPase from the φ11 helper phage has been suggested [Tormo-Más et al. (2010), Nature (London), 465, 779-782]. Towards elucidation of the molecular mechanism of this interaction, this study reports the expression, purification and X-ray analysis of φ11 dUTPase, which contains a phage-specific polypeptide segment that is not present in other dUTPases. Crystals were obtained using the hanging-drop vapour-diffusion method at room temperature. Data were collected to 2.98 Å resolution from one type of crystal. The crystal of φ11 dUTPase belonged to the cubic space group I23, with unit-cell parameters a = 98.16 Å, α = ß = γ = 90.00°.


Assuntos
Pirofosfatases/química , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/virologia , Cristalização , Cristalografia por Raios X
20.
J Appl Microbiol ; 111(4): 1025-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21812876

RESUMO

AIMS: To develop an efficient purification strategy for the bacteriophage lysin CHAP(K) . To evaluate its antibacterial spectrum(,) enzymatic properties, optimal reaction conditions and lytic activity against live Staphlyococcus aureus. METHODS AND RESULTS: Recombinant CHAP(K) was purified to homogeneity by cation exchange chromatography, with yields of up to 10 mg from 1 l of Escherichia coli culture. The lytic spectrum of CHAP(K) includes all staphylococcal species and also members of the genera Micrcococcus, Streptococcus, Nesterenkonia, Arthrobacter, Leuconostoc and Carnobacterium. The enzyme was active from pH 6 to 11 with an optimum activity at pH 9, from 5 to 40°C, with an optimum activity at 15°C. When cell lysis by CHAP(K) and lysostaphin was compared over a concentration range of 2·5-10 µg ml⁻¹ using live Staph. aureus for 5 min at 37°C, CHAP(K) gave rise to greater turbidity reduction indicating that it works more rapidly than lysostaphin. CONCLUSIONS: This study describes in detail the purification and characteristics of the novel phage-derived enzyme CHAP(K) demonstrating that it has excellent biochemical properties as an anti-staphylococcal agent. SIGNIFICANCE AND IMPACT OF THE STUDY: Currently, there is a need for new antimicrobial agents due to the increasing worldwide prevalence of antibiotic resistance. Our findings demonstrate the potential for development of CHAP(K) as an alternative therapeutic against pathogenic staphylococci including MRSA.


Assuntos
Antibacterianos/farmacologia , Enzimas/farmacologia , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Enzimas/isolamento & purificação , Lisostafina/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA