Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 138(14): 1258-1268, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077951

RESUMO

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemorragia/tratamento farmacológico , Animais , Fator IXa/antagonistas & inibidores , Fator VIIIa/uso terapêutico , Fator X/antagonistas & inibidores , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL
2.
J Membr Biol ; 255(6): 733-737, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098799

RESUMO

Blood coagulation is an intricate process, and it requires precise control of the activities of pro- and anticoagulant factors and sensitive signaling systems to monitor and respond to blood vessel insults. These requirements are fulfilled by phosphatidylserine, a relatively miniscule-sized lipid molecule amid the myriad of large coagulation proteins. This review limelight the role of platelet membrane phosphatidylserine (PS) in regulating a key enzymatic reaction of blood coagulation; conversion of factor X to factor Xa by the enzyme factor IXa and its cofactor factor VIIIa. PS is normally located on the inner leaflet of the resting platelet membrane but appears on the outer leaflet surface of the membrane surface after an injury happens. Human platelet activation leads to exposure of buried PS molecules on the surface of the platelet-derived membranes and the exposed PS binds to discrete and specific sites on factors IXa and VIIIa. PS binding to these sites allosterically regulates both factors IXa and VIIIa. The exposure of PS and its binding to factors IXa/VIIIa is a vital step during clotting. Insufficient exposure or a defective binding of PS to these clotting proteins is responsible for various hematologic diseases which are discussed in this review.


Assuntos
Fator IXa , Fator VIIIa , Humanos , Fator VIIIa/química , Fator VIIIa/metabolismo , Fator IXa/química , Fator IXa/metabolismo , Fosfatidilserinas/química , Fator X/metabolismo , Fator Xa/metabolismo , Cinética , Sítios de Ligação
3.
J Biol Chem ; 295(45): 15198-15207, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32859749

RESUMO

Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.


Assuntos
Fator IXa/metabolismo , Fator VIIIa/metabolismo , Fator X/metabolismo , Sítios de Ligação , Humanos , Cinética , Proteínas Recombinantes/metabolismo
4.
Blood ; 130(14): 1661-1670, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28729433

RESUMO

Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.


Assuntos
Coagulação Sanguínea , Fator VIII/metabolismo , Fator VIIa/metabolismo , Fator Xa/metabolismo , Tromboplastina/metabolismo , Fator VIIIa/metabolismo , Humanos , Trombina/metabolismo
5.
J Biol Chem ; 292(33): 13688-13701, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522609

RESUMO

Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3ß inactivation is involved in these processes and that ß-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of ß-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. ß-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent ß-catenin accumulation may represent a potential therapeutic approach to control breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Fator VIIIa/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/agonistas , Receptor PAR-2/agonistas , Transdução de Sinais , beta Catenina/agonistas , Mama/citologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator VIIIa/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboplastina/agonistas , Tromboplastina/genética , Tromboplastina/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
6.
Br J Haematol ; 183(2): 257-266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125997

RESUMO

Activated protein C (APC) inactivates activated factor V (FVa) and moderates FVIIIa by restricting FV cofactor function. Emicizumab is a humanized anti-FIXa/FX bispecific monoclonal antibody that mimicks FVIIIa cofactor function. In recent clinical trials in haemophilia A patients, once-weekly subcutaneous administration of emicizumab was remarkably effective in preventing bleeding events, but the mechanisms controlling the regulation of emicizumab-mediated haemostasis remain to be explored. We investigated the role of APC-mediated reactions in these circumstances. APC dose-dependently depressed thrombin generation (TG) initiated by emicizumab in FVIII-deficient plasmas, and in normal plasmas preincubated with an anti-FVIII antibody (FVIII-depleted). FVIIIa-independent FXa generation with emicizumab was not affected by the presence of APC, protein S and FV. The results suggested that APC-induced down-regulation of emicizumab-dependent TG was accomplished by direct inactivation of FVa. The addition of APC to emicizumab mixed with FVIII-depleted FV-deficient plasma in the presence of various concentrations of exogenous FV demonstrated similar attenuation of TG, irrespective of specific FV concentrations. Emicizumab-related TG in FVIII-depleted FVLeiden plasma was decreased by APC more than that observed with native FVLeiden plasma. The findings indicated that emicizumab-driven haemostasis was down regulated by APC-mediated FVa inactivation in plasma from haemophilia A patients without or with FV defects.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Hemofilia A/sangue , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Proteína C/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fator VIIIa/metabolismo , Fator Va/metabolismo , Humanos , Proteína C/administração & dosagem , Trombina/biossíntese
7.
J Med Genet ; 54(5): 338-345, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28007939

RESUMO

BACKGROUND: Haemophilia B is caused by genetic aberrations in the F9 gene. The majority of these are non-synonymous mutations that alter the primary structure of blood coagulation factor IX (FIX). However, a synonymous mutation c.459G>A (Val107Val) was clinically reported to result in mild haemophilia B (FIX coagulant activity 15%-20% of normal). The F9 mRNA of these patients showed no skipping or retention of introns and/or change in mRNA levels, suggesting that mRNA integrity does not contribute to the origin of the disease in affected individuals. The aim of this study is to elucidate the molecular mechanisms that can explain disease manifestations in patients with this synonymous mutation. METHODS: We analyse the molecular mechanisms underlying the FIX deficiency through in silico analysis and reproducing the c.459G>A (Val107Val) mutation in stable cell lines. Conformation and non-conformation sensitive antibodies, limited trypsin digestion, activity assays for FIX, interaction with other proteins and post-translation modifications were used to evaluate the biophysical and biochemical consequences of the synonymous mutation. RESULTS: The Val107Val synonymous mutation in F9 was found to significantly diminish FIX expression. Our results suggest that this mutation slows FIX translation and affects its conformation resulting in decreased extracellular protein level. The altered conformation did not change the specific activity of the mutated protein. CONCLUSIONS: The pathogenic basis for one synonymous mutation (Val107Val) in the F9 gene associated with haemophilia B was determined. A mechanistic understanding of this synonymous variant yields potential for guiding and developing future therapeutic treatments.


Assuntos
Fator IX/química , Fator IX/genética , Hemofilia B/genética , Mutação Silenciosa/genética , Linhagem Celular Tumoral , Códon/genética , Fator IX/metabolismo , Fator VIIIa/química , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Termodinâmica
8.
Blood ; 125(9): 1497-501, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25564403

RESUMO

We describe a family with an autosomal dominant disorder characterized by severe trauma- and surgery-related bleeding. The proband, who experienced life-threatening bleeding during a routine operation, had normal clotting times, but markedly reduced prothrombin consumption. Plasma levels of all coagulation factors and of the main coagulation inhibitors were normal. Thrombin generation at low triggers was severely impaired and mixing experiments suggested the presence of a coagulation inhibitor. Using whole exome sequencing, the underlying genetic defect was identified as the THBD c.1611C>A mutation (p.Cys537Stop), which predicts a truncated form of thrombomodulin that is shed from the vascular endothelium. The patient had decreased expression of endothelium-bound thrombomodulin, but extremely elevated levels of soluble thrombomodulin in plasma, impairing the propagation phase of coagulation via rapid activation of protein C and consequent inactivation of factors Va and VIIIa. The same thrombomodulin mutation has been recently described in an unrelated British family with strikingly similar features.


Assuntos
Transtornos da Coagulação Sanguínea/genética , Genes Dominantes , Mutação/genética , Trombomodulina/genética , Adulto , Coagulação Sanguínea/fisiologia , Fator VIIIa/metabolismo , Fator Va/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Linhagem , Reação em Cadeia da Polimerase , Proteína C/metabolismo , Trombina/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 36(12): 2334-2345, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789475

RESUMO

OBJECTIVE: Recent evidence suggests involvement of coagulation factor XIa (FXIa) in thrombotic event development. This study was conducted to explore possible synergies between tissue factor (TF) and exogenous FXIa (E-FXIa) in thrombin generation. APPROACH AND RESULTS: In thrombin generation assays, for increasing concentrations of E-FXIa with low, but not with high TF concentrations, peak thrombin significantly increased whereas lag time and time to peak significantly decreased. Similar dependencies of lag times and rates of thrombin generation were found in mathematical model simulations. In both in vitro and in silico experiments that included E-FXIa, thrombin bursts were seen for TF levels much lower than those required without E-FXIa. For in silico thrombin bursts initiated by the synergistic action of TF and E-FXIa, the mechanisms leading to the burst differed substantially from those for bursts initiated by high TF alone. For the synergistic case, sustained activation of platelet-bound FIX by E-FXIa, along with the feedback-enhanced activation of platelet-bound FVIIIa and FXa, was needed to elicit a thrombin burst. Furthermore, the initiation of thrombin bursts by high TF levels relied on different platelet FIX/FIXa binding sites than those involved in bursts initiated by low TF levels with E-FXIa. CONCLUSIONS: Low concentrations of TF and exogenous FXIa, each too low to elicit a burst in thrombin production alone, act synergistically when in combination to cause substantial thrombin production. The observation about FIX/FIXa binding sites may have therapeutic implications.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Fator Xa/metabolismo , Ativação Plaquetária , Trombina/metabolismo , Tromboplastina/metabolismo , Sítios de Ligação , Testes de Coagulação Sanguínea , Simulação por Computador , Cisteína Endopeptidases/metabolismo , Fator VIIIa/metabolismo , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Transdução de Sinais , Trombose/sangue , Fatores de Tempo
10.
Biochim Biophys Acta ; 1854(10 Pt A): 1351-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26012870

RESUMO

Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo.


Assuntos
Coagulação Sanguínea/genética , Fator X/metabolismo , Fator Xa/metabolismo , Mutação , Animais , Testes de Coagulação Sanguínea , Domínio Catalítico , Fator IXa/genética , Fator IXa/metabolismo , Fator VIIIa/genética , Fator VIIIa/metabolismo , Fator X/química , Fator X/genética , Fator Xa/química , Fator Xa/genética , Células HEK293 , Humanos , Cinética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombina/genética , Trombina/metabolismo
11.
Biochemistry ; 54(2): 481-9, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486042

RESUMO

Low-density lipoprotein receptor-related protein 1 (LRP) mediates clearance of blood coagulation factor VIII (FVIII). In LRP, FVIII binds the complement-type repeats (CRs) of clusters II and IV, which also bind a majority of other LRP ligands. No ligand is known for LRP cluster I, and only three ligands, including the LRP chaperone alpha-2 macroglobulin receptor-associated protein (RAP), bind cluster III. Using surface plasmon resonance, we found that in addition to clusters II and IV, activated FVIII (FVIIIa) binds cluster III. The specificity of this interaction was confirmed using an anti-FVIII antibody fragment, which inhibited the binding. Recombinant fragments of cluster III and its site-directed mutagenesis were used to localize the cluster's site for binding FVIIIa to CR.14-19. The interactive site of FVIIIa was localized within its A1/A3'-C1-C2 heterodimer (HDa), which is a major physiological remnant of FVIIIa. In mice, the clearance of HDa was faster than that of FVIII and prolonged in the presence of RAP, which is known to inhibit interactions of LRP with its ligands. In accordance with this, the cluster III site for RAP (CR.15-19) was found to overlap that for FVIIIa. Altogether, our findings support the involvement of LRP in FVIIIa catabolism and suggest a greater significance of the biological role of cluster III compared to that previously known.


Assuntos
Fator VIIIa/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Animais , Sítios de Ligação , Fator VIII/química , Fator VIII/metabolismo , Fator VIIIa/química , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Biochemistry ; 54(24): 3814-21, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26023895

RESUMO

We recently identified two hemophilia B patients who carried Gly-317 to Arg (FIX-G317R) or Gly-317 to Glu (FIX-G317E) substitutions in their FIX gene. The former mutation caused severe and the latter moderate bleeding in afflicted patients. To understand the molecular basis for the variable clinical manifestation of Gly-317 mutations, we prepared recombinant G317R and G317E derivatives of FIX and compared their kinetic properties to those of recombinant wild-type FIX in appropriate assay systems. Both physiological activators, factor XIa and extrinsic Tenase (factor VIIa-tissue factor), activated both zymogen variants with an ∼1.5-fold elevated K(m); however, extrinsic Tenase activated FIX-G317E with an ∼2-fold improved k(cat). By contrast to zymogen activation, the catalytic activities of both FIXa-G317R and FIXa-G317E enzymes toward the natural substrate, factor X, were dramatically (>4 orders of magnitude) impaired, but their apparent affinity for interaction with factor VIIIa was only slightly (<2-fold) decreased. Further studies revealed that the reactivity of FIXa-G317R and FIXa-G317E with antithrombin has been impaired 10- and 13-fold, respectively, in the absence and 166- and 500-fold, respectively, in the presence of pentasaccharide. As expected, the clotting activities of FIX variants could not be measured by the aPTT assay. These results implicate a critical role for Gly-317 in maintaining normal catalytic function for FIX/FIXa in the clotting cascade. The results further suggest that improved k(cat) of FIX-G317E activation in the extrinsic pathway together with dramatically impaired reactivity of FIXa-G317E with antithrombin may account for the less severe bleeding phenotype of a hemophilia B patient carrying the FIX-G317E mutation.


Assuntos
Precursores Enzimáticos/metabolismo , Fator IX/metabolismo , Glicina/química , Hemofilia B/genética , Hemorragia/etiologia , Proteínas Mutantes/metabolismo , Mutação , Substituição de Aminoácidos , Cisteína Endopeptidases/metabolismo , Ativação Enzimática , Precursores Enzimáticos/genética , Fator IX/genética , Fator VIIIa/metabolismo , Fator X/metabolismo , Fator XIa/metabolismo , Células HEK293 , Hemofilia B/metabolismo , Hemofilia B/fisiopatologia , Humanos , Cinética , Masculino , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/metabolismo , Índice de Gravidade de Doença
13.
J Biol Chem ; 289(20): 14020-9, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24692542

RESUMO

The factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His(281) (A1 domain) with Ser(524) (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His(281) and Ser(524) residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains. The swap variant showed WT-like FVIII and FVIIIa stability, which were markedly reduced for H281A and S524A variants in an earlier study. The disulfide-bridged variant showed ∼20% increased FVIII stability, and FVIIIa did not decay during the time course measured. This variant also yielded 35% increased thrombin peak values compared with WT in a plasma-based thrombin generation assay. Binding analyses of H281S-A1/A3C1C2 dimer with S524H-A2 subunit yielded a near WT-like affinity value, whereas combining the variant dimer or A2 subunit with the WT complement yielded ∼5- and ∼10-fold reductions, respectively, in affinity. Other functional properties including thrombin generation potential, FIXa binding affinity, Km for FX of FXase complexes, thrombin activation efficiency, and down-regulation by activated protein C showed similar results for the two variants compared with WT FVIII. These results indicate that the side chains of His(281) and Ser(524) are in close proximity and contribute to a bonding interaction in FVIII that is retained in FVIIIa.


Assuntos
Coagulação Sanguínea , Fator VIII/química , Fator VIII/metabolismo , Fator VIIIa/metabolismo , Histidina , Serina , Fator IXa/metabolismo , Fator VIII/genética , Humanos , Modelos Moleculares , Mutagênese , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Trombina/metabolismo
14.
Haematologica ; 100(6): 748-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25769543

RESUMO

The importance of factor Xa generation in thrombus formation has not been studied extensively so far. Here, we used mice deficient in either factor VIII or factor IX to determine the role of platelet-stimulated tenase activity in the formation of platelet-fibrin thrombi on collagen. With tissue factor present, deficiency in factor VIII or IX markedly suppressed thrombus growth, fibrin formation and platelet procoagulant activity (phosphatidylserine exposure). In either case, residual fibrin formation was eliminated in the absence of tissue factor. Effects of factor deficiencies were antagonized by supplementation of the missing coagulation factor. In wild-type thrombi generated under flow, phosphatidylserine-exposing platelets bound (activated) factor IX and factor X, whereas factor VIII preferentially co-localized at sites of von Willebrand factor binding. Furthermore, proteolytic activity of the generated activated factor X and thrombin was confined to the sites of phosphatidylserine exposure. With blood from a hemophilia A or B patient, the formation of platelet-fibrin thrombi was greatly delayed and reduced, even in the presence of high concentrations of tissue factor. A direct activated factor X inhibitor, rivaroxaban, added to human blood, suppressed both thrombin and fibrin formation. Together, these data point to a potent enforcement loop in thrombus formation due to factor X activation, subsequent thrombin and fibrin generation, causing activated factor X-mediated stimulation of platelet phosphatidylserine exposure. This implies that the factor VIII/factor IX-dependent stimulation of platelet procoagulant activity is a limiting factor for fibrin formation under flow conditions, even at high tissue factor concentrations.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Cisteína Endopeptidases/fisiologia , Fibrina/metabolismo , Proteínas de Neoplasias/fisiologia , Trombose/sangue , Animais , Plaquetas/patologia , Fator IXa/metabolismo , Fator VIIIa/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/patologia
15.
Circ J ; 79(2): 331-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25482382

RESUMO

BACKGROUND: Despite the good safety of rivaroxaban, there is limited information on strategies for urgent reversal of its antihemostatic effects. METHODS AND RESULTS: Alterations of hemostasis induced by rivaroxaban (230 ng/ml) were assessed by using several tests applied to steady and circulating human blood. Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were measured. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with circulating blood. The potential reversal of prothrombin complex concentrates (PCCs; 50 IU/kg), activated PCCs (aPCCs; 75 IU/kg), or recombinant factor VIIa (rFVIIa; 270 µg/kg) was evaluated. Impairment of TG parameters induced by rivaroxaban were corrected by the different concentrates (aPCC≥PCC>rFVIIa). Prolonged clotting times and reduced clot firmness caused by rivaroxaban on TEM tests were improved by different concentrates (rFVIIa≥aPCC>PCC). Rivaroxaban significantly reduced platelets and fibrin interactions with damaged vascular surfaces in perfusion studies. While alterations of platelet interactions were favourably counteracted by rFVIIa or aPCCs, reductions in fibrin formation were only partially restored by the different factor concentrates (rFVIIa>aPCC≥PCC). CONCLUSIONS: Rivaroxaban-induced alterations on coagulation parameters measured through assays performed under static conditions were easily reversed by the different concentrates. Studies under flow conditions revealed that these concentrates normalized the action of rivaroxaban on platelets, and significantly improved fibrin formation; although in the later case, levels were not restored to the pre-treatment value.


Assuntos
Fatores de Coagulação Sanguínea/farmacologia , Fator VIII/farmacologia , Fator VIIIa/farmacologia , Hemostasia/efeitos dos fármacos , Rivaroxabana/farmacologia , Humanos
16.
J Biol Chem ; 288(36): 26105-26111, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23884417

RESUMO

A recent chemical footprinting study in our laboratory suggested that region 1803-1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803-1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803-1810 and 1811-1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811-1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811-1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803-1810 and FVIII/FV 1811-1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811-1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811-1818 contributes to FIXa binding. Both regions 1803-1810 and 1811-1818 contribute to FVIIIa stability.


Assuntos
Fator IX/química , Fator VIII/química , Fator VIIIa/química , Substituição de Aminoácidos , Sítios de Ligação , Fator IX/genética , Fator IX/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Fator VIIIa/genética , Fator VIIIa/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Estabilidade Proteica , Estrutura Terciária de Proteína
17.
J Biol Chem ; 288(21): 15057-64, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23580639

RESUMO

Factor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.9 ± 1.6 nm) that was similar to the A3C1C2 subunit (Kd = 3.6 ± 0.6 nm). This approach was used to evaluate a series of baculovirus-expressed, isolated A2 domain (bA2) variants where alanine substitutions were made for individual residues within the sequence 707-714, the C-terminal region of A2 thought to be FIXa interactive. Three of six bA2 variants examined displayed 2- to 4-fold decreased affinity for FIXa as compared with WT bA2. The variant bA2 proteins were also tested in two reconstitution systems to determine activity and affinity parameters in forming FXase and FVIIIa. Vmax values for all variants were similar to the WT values, indicating that these residues do not affect cofactor function. All variants showed substantially greater increases in apparent Kd relative to WT in reconstituting the FXase complex (8- to 26-fold) compared with reconstituting FVIIIa (1.3- to 6-fold) suggesting that the mutations altered interaction with FIXa. bA2 domain variants with Ala replacing Lys(707), Asp(712), and Lys(713) demonstrated the greatest increases in apparent Kd (17- to 26-fold). These results indicate a high affinity interaction between the FVIIIa A2 subunit and FIXa and show a contribution of several residues within the 707-714 sequence to this binding.


Assuntos
Fator IXa/metabolismo , Fator VIIIa/metabolismo , Dobramento de Proteína , Substituição de Aminoácidos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fator IXa/química , Fator IXa/genética , Fator VIIIa/química , Fator VIIIa/genética , Humanos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
18.
Biochem Biophys Res Commun ; 450(1): 735-40, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24952158

RESUMO

Factor VIIIa is a non-covalently bound hetero-trimer among A1, A2 and A3-C1-C2 domains and an essential co-factor for factor IXa enzyme during proteolytic activation of factor X zymogen. The relatively weak interactions between A2 and the interface A1/A3 domains dampen the functional stability of FVIIIa in plasma and results in rapid degradation. We studied the mutational effect of three charged residues (Asp519, Glu665 and Asp666) to several hydrophobic residues by molecular dynamics simulations. Analysis of the binding free energy by MM-PBSA and MM-GBSA methods shows that the mutation of Asp519 and Glu665 residues to either Val or Ala enhance the A2 domain binding affinity in agreement with the experimental site-specific mutagenesis data. Mutation of Asp666 to Val, Tyr, Met and Phe showed largest improvement in the A2-domain binding among the eight hydrophobic mutants studied. Our studies suggest that the enrichment of hydrophobic interactions in the buried surface regions of A2 domain plays crucial role in improving the overall stability of FVIIIa.


Assuntos
Fator VIIIa/química , Modelos Químicos , Simulação de Dinâmica Molecular , Sítios de Ligação , Simulação por Computador , Estabilidade de Medicamentos , Transferência de Energia , Fator VIIIa/genética , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
19.
Biochem Biophys Res Commun ; 452(3): 408-14, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25157807

RESUMO

Coagulation factor X (FX) zymogen activation by factor IXa (FIXa) enzyme plays a critical role in the middle-phase of coagulation cascade. The activation process is catalytically inert and requires FIXa binding and complex formation with co-factor VIIIa (FVIIIa). In order to understand the structural details of the FVIIIa:FIXa complex, we employed knowledge-driven protein-protein docking and aqueous-phase MD refinement methods to develop a stable structural complex between FVIIIa and FIXa. The model shows that all four domains of FIXa wrap across FVIIIa that spans the co-factor binding surface of A2, A3 and C1 domains. The region surrounding the 558-helix of the A2-domain of FVIIIa is predicted to be the key interaction site with the helical segments of Lys293-Lys301 and Asp332-Arg338 residues of the serine-protease domain of FIXa. The hydrophobic helical stack between the GLA and EGF1 domains of FIXa is predicted to be primary interacting region with the A3-C2 domain interface of FVIIIa.


Assuntos
Aminoácidos/química , Fator IXa/química , Fator VIIIa/química , Sítios de Ligação , Coagulação Sanguínea , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Soluções , Eletricidade Estática
20.
Amino Acids ; 46(4): 1087-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464027

RESUMO

Novel anticoagulant therapies target specific clotting factors in blood coagulation cascade. Inhibition of the blood coagulation through Factor VIII-Factor IX interaction represents an attractive approach for the treatment and prevention of diseases caused by thrombosis. Our research efforts are continued by the synthesis and biological evaluation of cyclic, head to tail peptides, analogs of the 558-565 sequence of the A2 subunit of FVIII, aiming at the efficient inhibition of Factor VIIIa-Factor IXa interaction. The analogs were synthesized on solid phase using the acid labile 2-chlorotrityl chloride resin, while their anticoagulant activities were examined in vitro by monitoring activated partial thromboplastin time and the inhibition of Factor VIII activity. The results reveal that these peptides provide bases for the development of new anticoagulant agents.


Assuntos
Anticoagulantes/química , Anticoagulantes/síntese química , Anticoagulantes/farmacologia , Fator VIIIa/síntese química , Fator VIIIa/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Coagulação Sanguínea/efeitos dos fármacos , Epitopos/química , Epitopos/farmacologia , Fator VIIIa/química , Humanos , Estrutura Molecular , Tempo de Tromboplastina Parcial , Peptídeos Cíclicos/química , Subunidades Proteicas/síntese química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA