Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(19): 1953-1964, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237141

RESUMO

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
2.
Blood ; 144(2): 187-200, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38620074

RESUMO

ABSTRACT: SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in normal B cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV-negative (EVB-) BL was associated with an IG∷MYC translocation generated by aberrant class switch recombination, whereas in EBV-negative (EBV-)/SOX11-negative (SOX11-) tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations. Interestingly, EBV- SOX11-expressing BL showed higher frequency of SMARCA4 and ID3 mutations than EBV-/SOX11- cases. By RNA sequencing, we identified a SOX11-associated gene expression profile, with functional annotations showing partial overlap with the SOX11 transcriptional program of MCL. Contrary to MCL, no differences on cell migration or B-cell receptor signaling were found between SOX11- and SOX11-positive (SOX11+) BL cells. However, SOX11+ BL showed higher adhesion to vascular cell adhesion molecule 1 (VCAM-1) than SOX11- BL cell lines. Here, we demonstrate that EBV- BL comprises 2 subsets of cases based on SOX11 expression. The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic landscape suggest a role of SOX11 in the early pathogenesis of BL.


Assuntos
Linfoma de Burkitt , Herpesvirus Humano 4 , Fatores de Transcrição SOXC , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Herpesvirus Humano 4/genética , Regulação Neoplásica da Expressão Gênica , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Mutação , DNA Helicases/genética , DNA Helicases/metabolismo , Translocação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Nucleares
3.
Gastroenterology ; 167(4): 718-732.e18, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38729450

RESUMO

BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Desdiferenciação Celular , Ceruletídeo , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/genética , Metaplasia/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Humanos , Pancreatite/patologia , Pancreatite/genética , Pancreatite/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Modelos Animais de Doenças , Pâncreas/patologia , Pâncreas/metabolismo , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Carcinoma in Situ/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Transcriptoma
4.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705228

RESUMO

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Neoplasias Colorretais , Citoesqueleto , Pseudópodes , Fatores de Transcrição SOXC , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Movimento Celular/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Células CACO-2 , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
5.
J Cell Mol Med ; 28(14): e18556, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039706

RESUMO

Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.


Assuntos
Carcinogênese , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição SOXC , Humanos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Transdução de Sinais , Masculino , Feminino , Animais , Regulação para Cima/genética , Regiões Promotoras Genéticas , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , Pessoa de Meia-Idade , Camundongos , Prognóstico , Apoptose/genética
6.
Am J Physiol Renal Physiol ; 327(3): F426-F434, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991010

RESUMO

The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.


Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Camundongos Knockout , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fosforilação , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rabdomiólise/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos , Masculino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Epiteliais/metabolismo
7.
Lab Invest ; 104(5): 102042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431117

RESUMO

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Fatores de Transcrição SOXC , Feminino , Humanos , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/secundário , Carcinoma de Células Escamosas do Esôfago/cirurgia , Linfonodos/patologia , Linfonodos/metabolismo , Prognóstico , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
8.
Br J Cancer ; 131(1): 171-183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760444

RESUMO

BACKGROUND: Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS: Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS: RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION: Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Progressão da Doença , Epigênese Genética , Recidiva Local de Neoplasia , Fatores de Transcrição SOXC , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
9.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447391

RESUMO

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Assuntos
Células da Granulosa , Via de Sinalização Hippo , Feminino , Animais , Humanos , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose , Mamíferos/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/metabolismo
10.
Biochem Biophys Res Commun ; 708: 149815, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531220

RESUMO

Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.


Assuntos
Dioxóis , Fígado Gorduroso , Lignanas , Pró-Proteína Convertase 9 , Fatores de Transcrição SOXC , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Mitofagia , Ácido Oleico/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
11.
Mod Pathol ; 37(2): 100405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104893

RESUMO

Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma de Célula do Manto , Adulto , Humanos , Linfoma de Célula do Manto/metabolismo , Ciclina D1/genética , Hibridização in Situ Fluorescente , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/patologia , Fatores de Transcrição SOXC/genética
12.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943117

RESUMO

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Assuntos
Progressão da Doença , Neoplasias Pancreáticas , Proteômica , Fatores de Transcrição SOXC , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Transdução de Sinais , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
13.
J Transl Med ; 22(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169402

RESUMO

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Assuntos
Nefropatias Diabéticas , Ferroptose , Cálculos Renais , Humanos , Camundongos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Oxalato de Cálcio , Histonas/metabolismo , Epigênese Genética , Rim/patologia , Nefropatias Diabéticas/metabolismo , Cálculos Renais/patologia , RNA/metabolismo , Fatores de Transcrição SOXC/metabolismo , Sistema y+ de Transporte de Aminoácidos
14.
Clin Genet ; 105(1): 81-86, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558216

RESUMO

Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 6/12 -year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Criança , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fácies , Hiperventilação/diagnóstico , Hiperventilação/genética , Fenótipo , Fator de Transcrição 4/genética , Fatores de Transcrição SOXC/genética
15.
Electrophoresis ; 45(15-16): 1408-1417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629299

RESUMO

Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.


Assuntos
Adenocarcinoma de Pulmão , Cisplatino , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Fatores de Transcrição SOXC , Humanos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Reparo do DNA/efeitos dos fármacos , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
16.
Synapse ; 78(5): e22306, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39135278

RESUMO

BACKGROUND: Increasing evidence demonstrated the involvement of microRNAs (miRNAs) in the onset and development of neuropathic pain (NP). Exploring the molecular mechanism underlying NP and identifying key molecules could provide potential targets for the therapy of NP. The function and mechanism of miR-125b-5p in regulating NP have been studied, aiming to find a potential therapeutic target for NP. METHODS: NP rat models were established by the chronic constriction injury (CCI) method. The paw withdrawal threshold and paw withdrawal latency were assessed to evaluate the establishment and recovery of rats. Highly aggressive proliferating immortalized (HAPI) micoglia cell, a rat microglia cell line, was treated with lipopolysaccharide (LPS). The M1/M2 polarization and inflammation were evaluated by enzyme-linked immunosorbent assay and western blotting. RESULTS: Decreasing miR-125b-5p and increasing SOX11 were observed in CCI rats and LPS-induced HAPI cells. Overexpressing miR-125b-5p alleviated mechanical allodynia and thermal hyperalgesia and suppressed inflammation in CCI rats. LPS induced M1 polarization and inflammation of HAPI cells, which was attenuated by miR-125b-5p overexpression. miR-125-5p negatively regulated the expression of SOX11 in CCI rats and LPS-induced HAPI cells. Overexpressing SOX11 reversed the protective effects of miR-125b-5p on mechanical pain in CCI rats and the polarization and inflammation in HAPI cells, which was considered the mechanism underlying miR-125b-5p. CONCLUSION: miR-125b-5p showed a protective effect on NP by regulating inflammation and polarization of microglia via negatively modulating SOX11.


Assuntos
Lipopolissacarídeos , MicroRNAs , Microglia , Neuralgia , Ratos Sprague-Dawley , Fatores de Transcrição SOXC , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Neuralgia/metabolismo , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Masculino , Microglia/metabolismo , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Hiperalgesia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Linhagem Celular , Modelos Animais de Doenças
17.
Am J Med Genet A ; 194(8): e63626, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591849

RESUMO

De novo germline variants of the SRY-related HMG-box 11 gene (SOX11) have been reported to cause Coffin-Siris syndrome-9 (CSS-9), a rare congenital disorder associated with multiple organ malformations, including ear anomalies. Previous clinical and animal studies have found that intragenic pathogenic variant or haploinsufficiency in the SOX11 gene could cause inner ear malformation, but no studies to date have documented the external ear malformation caused by SOX11 deficiency. Here, we reported a Chinese male with unilateral microtia and bilateral sensorineural deafness who showed CSS-like manifestations, including dysmorphic facial features, impaired neurodevelopment, and fingers/toes malformations. Using trio-based whole-exome sequencing, a de novo missense variant in SOX11 (NM_003108.4: c.347A>G, p.Y116C) was identified and classified as pathogenic variant as per American College of Medical Genetics guidelines. Moreover, a systematic search of the literature yielded 12 publications that provided data of 55 SOX11 intragenic variants affecting various protein-coding regions of SOX11 protein. By quantitatively analyzing phenotypic spectrum information related to these 56 SOX11 variants (including our case), we found variants affecting different regions of SOX11 protein (high-mobility group [HMG] domain and non-HMG regions) appear to influence the phenotypic spectrum of organ malformations in CSS-9; variants altering the HMG domain were more likely to cause the widest range of organ anomalies. In summary, this is the first report of CSS with external ear malformation caused by pathogenic variant in SOX11, indicating that the SOX11 gene may be not only essential for the development of the inner ear but also critical for the morphogenesis of the external ear. In addition, thorough clinical examination is recommended for patients who carry pathogenic SOX11 variants that affect the HMG domain, as these variants may cause the widest range of organ anomalies underlying this condition.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Fatores de Transcrição SOXC , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Orelha Externa/anormalidades , Orelha Externa/patologia , Sequenciamento do Exoma , Face/anormalidades , Face/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Micrognatismo/genética , Micrognatismo/patologia , Micrognatismo/diagnóstico , Mutação de Sentido Incorreto/genética , Pescoço/anormalidades , Pescoço/patologia , Fenótipo , Fatores de Transcrição SOXC/genética
18.
BMC Gastroenterol ; 24(1): 265, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143462

RESUMO

BACKGROUND: The activity and number of immune cells in the tumor microenvironment are closely related to the overall survival of patients with hepatocellular carcinoma (HCC). The sex-determining region Y-box 4 (SOX4) gene is abnormally expressed in various tumor tissues and is critical for tumor development. However, the correlation between SOX4 expression in HCC and tumor immunity is unclear. METHODS: SOX4 expression was explored using data from The Cancer Genome Atlas, and UALCAN databases. Real-time reverse transcription quantitative and western blotting were used to analyze SOX4 expression in several liver cancer cell lines. Additionally, correlations among SOX4 expression, cancer immune characteristics, and infiltrated immune cell gene marker sets in patients with HCC were analyzed using data from the Tumor Immune Estimation Resource, Gene Expression Profiling Interactive Analysis, and Tumor-Immune System Interactions databases. Moreover, we evaluated SOX4 expression in HCC tissues and the correlation of SOX4 expression with survival rate. Subsequently, noncoding RNAs (ncRNAs) responsible for SOX4 overexpression were identified using expression, correlation, and survival analyses. RESULTS: SOX4 expression was significantly upregulated in HCC and correlated with a poor prognosis. Additionally, SOX4 upregulation in HCC positively correlated with immune cell infiltration, several biomarkers of immune cells, and immune checkpoint expression. Finally, the MCM3AP-AS1/hsa-miR-204-5p axis was identified as the most likely upstream ncRNA-related pathway for SOX4 in HCC. These results indicated that ncRNA-mediated upregulation of SOX4 correlated with the immune infiltration level and poor prognosis in HCC. Our findings provide new directions for the development of novel immunotherapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fatores de Transcrição SOXC , Regulação para Cima , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , RNA não Traduzido/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Taxa de Sobrevida
19.
Mol Biol Rep ; 51(1): 116, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227121

RESUMO

BACKGROUND: SOX4 is a transcription factor belonging to the SOX (Sry-related High Mobility Group [HMG] box) family and plays a pivotal role in various biological processes at various stages of life. SOX4 is also expressed in the skin in adults and has been reported to be involved in wound healing, tumor formation, and metastasis. METHODS AND RESULTS: In this study, we investigated the role of SOX4 in keratinocyte phenotypic changes. We generated a SOX4-overexpressing keratinocyte cell line that expresses SOX4 in a doxycycline (DOX)-inducible manner. DOX treatment induced a change from a paving stone-like morphology to a spindle-like morphology under microscopic observation. Comprehensive gene analysis by RNA sequencing revealed increased expression of genes related to anatomical morphogenesis and cell differentiation as well as decreased expression of genes related to epithelial formation and keratinization, suggesting that SOX4 induced EMT-like phenotype in keratinocytes. Differentially expressed genes (DEGs) obtained by RNA-seq were confirmed using qRT-PCR. DOX-treated TY-1 SOX4 showed a decrease in the epithelial markers (KRT15, KRT13, KRT5, and CLDN1) and an increase in the mesenchymal marker FN1. Protein expression changes by Western blotting also showed a decrease in the epithelial marker proteins keratin 15, keratin 13, and claudin 1, and an increase in the mesenchymal marker fibronectin. Removal of DOX from DOX-treated cells also restored the epithelial and mesenchymal markers altered by SOX4. CONCLUSION: Our results indicate that SOX4 reversibly induces an EMT-like phenotype in human keratinocytes via suppression of epithelial marker genes.


Assuntos
Queratinócitos , Fatores de Transcrição SOXC , Pele , Humanos , Western Blotting , Doxiciclina , Expressão Gênica , Fenótipo , Fatores de Transcrição SOXC/genética
20.
Mol Biol Rep ; 51(1): 281, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324208

RESUMO

BACKGROUND: Neuropathic pain, a complex condition originating from nervous system damage, remains a significant clinical challenge due to limited understanding of its underlying mechanisms. Recent research highlights the SOX11 transcription factor, known for its role in nervous system development, as a crucial player in neuropathic pain development and maintenance. This study investigates the role of the SOX11-ARID1A-SOCS3 pathway in neuropathic pain modulation within the spinal cord. METHODS AND RESULTS: Using a spinal nerve ligation (SNL) model in mice, we observed a significant upregulation of Sox11 in the spinal cord dorsal horn post-injury. Intrathecal administration of Sox11 shRNA mitigated SNL-induced neuropathic pain behaviors, including mechanical allodynia and heat hyperalgesia. Further, we demonstrated that Sox11 regulates neuropathic pain via transcriptional control of ARID1A, with subsequent modulation of SOCS3 expression. Knockdown of ARID1A and SOCS3 via shRNA resulted in alleviation of Sox11-induced pain sensitization. Additionally, Sox11 overexpression led to an increase in ARID1A binding to the SOCS3 promoter, enhancing chromatin accessibility and indicating a direct regulatory relationship. These findings were further supported by in vitro luciferase reporter assays and chromatin accessibility analysis. CONCLUSIONS: The SOX11-ARID1A-SOCS3 pathway plays a pivotal role in the development and maintenance of neuropathic pain. Sox11 acts as a master regulator, modulating ARID1A, which in turn influences SOCS3 expression, thereby contributing to the modulation of neuropathic pain. These findings provide a deeper understanding of the molecular mechanisms underlying neuropathic pain and highlight potential therapeutic targets for its treatment. The differential regulation of this pathway in the spinal cord and dorsal root ganglia (DRG) underscores its complexity and the need for targeted therapeutic strategies.


Assuntos
Proteínas de Ligação a DNA , Neuralgia , Fatores de Transcrição SOXC , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Cromatina , Hiperalgesia , RNA Interferente Pequeno , Fatores de Transcrição SOXC/genética , Medula Espinal , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteínas de Ligação a DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA