Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(3): 513-528, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38115201

RESUMO

Intracellular bacteria have evolved mechanisms to invade host cells, establish an intracellular niche that allows survival and replication, produce progeny, and exit the host cell after completion of the replication cycle to infect new target cells. Bacteria exit their host cell by (i) initiation of apoptosis, (ii) lytic cell death, and (iii) exocytosis. While bacterial egress is essential for bacterial spreading and, thus, pathogenesis, we currently lack information about egress mechanisms for the obligate intracellular pathogen C. burnetii, the causative agent of the zoonosis Q fever. Here, we demonstrate that C. burnetii inhibits host cell apoptosis early during infection, but induces and/or increases apoptosis at later stages of infection. Only at later stages of infection did we observe C. burnetii egress, which depends on previously established large bacteria-filled vacuoles and a functional intrinsic apoptotic cascade. The released bacteria are not enclosed by a host cell membrane and can infect and replicate in new target cells. In summary, our data argue that C. burnetii egress in a non-synchronous way at late stages of infection. Apoptosis-induction is important for C. burnetii egress, but other pathways most likely contribute.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Coxiella burnetii/metabolismo , Febre Q/metabolismo , Febre Q/microbiologia , Febre Q/patologia , Apoptose/fisiologia , Transdução de Sinais , Vacúolos/metabolismo , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA