Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(4): 1102-1118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323852

RESUMO

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Assuntos
Núcleo Celular , Festuca , Lolium , Poliploidia , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma de Cloroplastos , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridização Genética , Regulação da Expressão Gênica de Plantas
2.
BMC Genomics ; 25(1): 683, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982385

RESUMO

BACKGROUND: The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS: Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS: These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.


Assuntos
Resposta ao Choque Térmico , Complexo de Proteína do Fotossistema II , Proteômica , Termotolerância , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica/métodos , Festuca/metabolismo , Festuca/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteoma/metabolismo
3.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890560

RESUMO

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Assuntos
Festuca , Lolium , Fenótipo , Sementes , Lolium/crescimento & desenvolvimento , Lolium/genética , Lolium/anatomia & histologia , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/anatomia & histologia
4.
BMC Plant Biol ; 24(1): 714, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060979

RESUMO

BACKGROUND: Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS: The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS: Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.


Assuntos
Festuca , Plântula , Água , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Água/metabolismo , Transcriptoma , Germinação , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo
5.
Proc Biol Sci ; 291(2027): 20240673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39079667

RESUMO

Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.


Assuntos
Pisum sativum , Raízes de Plantas , Pisum sativum/fisiologia , Raízes de Plantas/fisiologia , Festuca/fisiologia , Solo/química , Biomassa
6.
J Evol Biol ; 37(6): 704-716, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38761114

RESUMO

The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.


Assuntos
Festuca , Festuca/genética , Mudança Climática , Adaptação Fisiológica/genética
7.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320313

RESUMO

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Assuntos
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análise , Endófitos/química , Endófitos/fisiologia , Epichloe/química , Epichloe/fisiologia , Ergotaminas/metabolismo , Festuca/microbiologia , Festuca/fisiologia , Herbivoria , Compostos Heterocíclicos com 2 Anéis , Alcaloides Indólicos/metabolismo , Lolium/microbiologia , Lolium/fisiologia , Micotoxinas , Defesa das Plantas contra Herbivoria , Poaceae/microbiologia , Poaceae/metabolismo , Simbiose
8.
Chromosome Res ; 31(3): 26, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658970

RESUMO

In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.


Assuntos
Festuca , Sementes , Núcleo Celular , Meiose , Cromossomos
9.
Ecotoxicol Environ Saf ; 271: 115975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244514

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.


Assuntos
Festuca , Lolium , Hidrocarbonetos Policíclicos Aromáticos , Festuca/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Lolium/metabolismo , Espectrometria de Massas
10.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657453

RESUMO

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Assuntos
Biodegradação Ambiental , Cádmio , Festuca , Folhas de Planta , Raízes de Plantas , Folhas de Planta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Festuca/metabolismo , Festuca/efeitos dos fármacos , Irrigação Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Água/química
11.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792226

RESUMO

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Assuntos
Alelopatia , Hordeum , Extratos Vegetais , Hordeum/química , Hordeum/crescimento & desenvolvimento , Hordeum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Introduzidas , Trifolium/química , Trifolium/crescimento & desenvolvimento , Trifolium/efeitos dos fármacos , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Festuca/efeitos dos fármacos , Festuca/crescimento & desenvolvimento , Festuca/química
12.
Vet Clin North Am Equine Pract ; 40(1): 95-111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281896

RESUMO

"Fescue toxicosis" and reproductive ergotism present identical toxidromes in late-gestational mares and, likely, other equids. Both toxic syndromes are caused by ergopeptine alkaloids (EPAs) of fungal origin, and they are collectively referred to as equine ergopeptine alkaloid toxicosis (EEPAT). EPAs are produced by either a toxigenic endophyte (Epichloë coenophiala) in tall fescue and/or a nonendophytic fungus (Claviceps purpurea), infecting small grains and grasses. EEPAT can cause hypoprolactinemia-induced agalactia/dysgalactia, prolonged gestation, dystocia, and other reproductive abnormalities in mares, as well as failure of passive transfer in their frequently dysmature/overmature/postmature foals. Prevention relies on eliminating exposures and/or reversing hypoprolactinemia.


Assuntos
Alcaloides de Claviceps , Festuca , Doenças dos Cavalos , Animais , Cavalos , Feminino , Gravidez , Alcaloides de Claviceps/toxicidade , Endófitos , Doenças dos Cavalos/induzido quimicamente , Festuca/microbiologia , Poaceae
13.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789301

RESUMO

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Assuntos
Festuca , Genomas de Plastídeos , Lolium , Festuca/genética , Melhoramento Vegetal , Poaceae/genética , Lolium/genética , DNA de Plantas/genética
14.
New Phytol ; 238(2): 624-636, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658468

RESUMO

Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.


Assuntos
Festuca , Lolium , Lolium/genética , Festuca/genética , Hibridização Genética , Genoma de Planta , Cromossomos de Plantas/genética , Meiose/genética
15.
J Exp Bot ; 74(1): 396-414, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214776

RESUMO

A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.


Assuntos
Resistência à Seca , Festuca , Lolium , Resistência à Seca/genética , Secas , Festuca/genética , Festuca/metabolismo , Lolium/genética , Lolium/metabolismo , Genótipo
16.
Ann Bot ; 131(6): 1011-1023, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209108

RESUMO

BACKGROUND AND AIMS: Grasses of the Festuca genus have complex phylogenetic relations due to morphological similarities among species and interspecific hybridization processes. Within Patagonian fescues, information concerning phylogenetic relationships is very scarce. In Festuca pallescens, a widely distributed species, the high phenotypic variability and the occurrence of interspecific hybridization preclude a clear identification of the populations. Given the relevance of natural rangelands for livestock production and their high degradation due to climate change, conservation actions are needed and knowledge about genetic variation is required. METHODS: To unravel the intraspecific phylogenetic relations and to detect genetic differences, we studied 21 populations of the species along its natural geographical distribution by coupling both molecular [internal transcribed spacer (ITS) and trnL-F markers] and morpho-anatomical analyses. Bayesian inference, maximum likelihood and maximum parsimony methods were applied to assemble a phylogenetic tree, including other native species. The morphological data set was analysed by discriminant and cluster analyses. KEY RESULTS: The combined information of the Bayesian tree (ITS marker), the geographical distribution of haplotype variants (trnL-F marker) and the morpho-anatomical traits, distinguished populations located at the margins of the distribution. Some of the variants detected were shared with other sympatric species of fescues. CONCLUSIONS: These results suggest the occurrence of hybridization processes between species of the genus at peripheral sites characterized by suboptimal conditions, which might be key to the survival of these populations.


Assuntos
Festuca , Filogenia , Festuca/genética , Teorema de Bayes , Variação Genética , Poaceae/genética , Análise de Sequência de DNA
17.
Microb Ecol ; 86(4): 2618-2626, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470815

RESUMO

Tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) is a cool-season perennial grass widely grown for forage and turf. Tall fescue lives in association with a fungal endophyte that helps the grass overcome abiotic and biotic stressors. The endophyte is asexual and transmits vertically from the tall fescue plant to the next generation through the seed. Producers of endophyte-infected tall fescue must have endophyte infection in at least 70% of their seed. Therefore, endophyte seed transmission is vital in breeding and seed production. Transfer of endophytes from their native host to different backgrounds of elite tall fescue cultivars can lead to a low seed transmission of the endophyte to the seed. This study screened 23 previously uncharacterized endophyte strains for transmissibility when artificially inoculated into continental and Mediterranean-type host tall fescue. We found no correlation between the rate of successful inoculation and the seed transmission rate of the endophyte in the new host. Nor did the seed transmission rate of the endophyte strains in their native host correlate with the seed transmission rate of the endophyte in the new host. Five strains exhibited seed transmission above 70% in both Mediterranean and Continental host backgrounds and will be characterized further for potential use in cultivar development.


Assuntos
Epichloe , Festuca , Lolium , Endófitos/genética , Lolium/genética , Lolium/microbiologia , Epichloe/genética , Poaceae , Sementes/microbiologia , Festuca/microbiologia
18.
Physiol Plant ; 175(1): e13861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36690459

RESUMO

Expansins are cell-wall loosening proteins involved in plant cell expansion and elongation. Objectives of this study were to identify expansins related to leaf elongation in a perennial grass species and determine the relationship between the expression of expansin genes and leaf elongation. A total of 20 expansin genes were identified in tall fescue (Festuca arundinacea), out of which nine genes belonged to the EXPA- and 11 to the EXPB subfamily. Two genotypes ("TF007" and "TF116") with different growth rates were used to determine the correlation between expansins and leaf growth. Among the 20 expansins, 16 were differentially expressed in the leaf growth zone in "TF007" and "TF116." The further analysis of gene expression in different leaf segments of "TF007" and "TF116" revealed that the expression level of FaEXPB16 was positively correlated with leaf elongation rate, and "TF007" had a higher leaf elongation rate than "TF116" due to the greater expression level of FaEXPB16. FaEXPA7 exhibited significantly higher expression level in leaves of the rapid-growing genotypes than the slow-growing genotypes, suggesting that FaEXPA7 acts as a positive regulator for leaf elongation. FaEXPA7 also exhibited its highest expression level in the cell division zone located in the leaf base. FaEXPB3, FaEXPB4-2, and FaEXPB11-2 showed a negative correlation with the leaf elongation rate in "TF007" and "TF116" and were highly expressed in leaves of the slow-growing genotypes. As promoting or repressing factors for leaf growth, these five expansins could be used as candidate genes in developing the rapid or slow-growing perennial grass species.


Assuntos
Festuca , Lolium , Poaceae/genética , Lolium/metabolismo , Genótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
19.
J Dairy Sci ; 106(6): 4072-4091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028960

RESUMO

This experiment investigated the variation in enteric methane production and associated gas exchange parameters, nutrient digestibility, rumen fermentation, and rumen microbiome when a range of silages based on different forage types (grass or clover), and different species within the 2 types, were fed as the sole feed to heifers. Three grass species (perennial ryegrass, festulolium, and tall fescue) and 2 clover species (red clover and white clover) were included. Perennial ryegrass was harvested at 2 maturity stages in the primary growth, white clover was harvested once in the primary growth, and 4 cuts of festulolium and tall fescue and 3 cuts of red clover were harvested during the growing season, giving 14 different silage batches in total. Sixteen Holstein heifers 16 to 21 mo old and 2 to 5 mo in pregnancy were fed the silages ad libitum as the sole feed in an incomplete crossover design. Each silage was fed to 4 heifers, except for the 2 perennial ryegrass silages, which were fed to 8 heifers; in total 64 observations. The CH4 production was measured for 3 d in respiration chambers. Heifers fed clover silages had higher dry matter intake (DMI) compared with heifers fed grass silages, and heifers fed tall fescue silages had the numerically the lowest DMI. Compared with grass silages, feeding clover silages led to higher crude protein digestibility but lower neutral detergent fiber (NDF) digestibility. Rumen pH was higher in heifers fed clover silages compared with those fed grass silages. Based on composition analysis, the rumen microbiota of the heifers clustered clearly according to forage type and species. More specifically, 7 of the 34 dominating rumen bacterial genus-level groups showed higher relative abundances for the clover silages, whereas 7 genus-level groups showed higher abundances for the grass silages. Methane yield was higher for heifers fed grass silages than for those fed clover silages when methane production was related to dry matter and digestible organic matter intake, whereas the opposite was seen when related to NDF digestion. The gross energy lost as methane (CH4 conversion factor, %) reduced from 7.5% to 6.7%, equivalent to an 11% reduction. The present study gives the outlines for choosing the optimal forage type and forage species with respect to nutrient digestibility and enteric methane emission in ruminants.


Assuntos
Festuca , Lolium , Trifolium , Gravidez , Bovinos , Animais , Feminino , Poaceae/metabolismo , Silagem/análise , Rúmen/metabolismo , Medicago , Trifolium/metabolismo , Dieta/veterinária , Nutrientes/análise , Digestão , Metano/metabolismo , Lactação
20.
Ecotoxicol Environ Saf ; 265: 115511, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774542

RESUMO

Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 µg mL-1 to 0.45 µg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.


Assuntos
Festuca , Herbicidas , Poluentes do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Festuca/metabolismo , Solo , Herbicidas/análise , Água , Chá , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA