Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(12): e1011066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574449

RESUMO

Invasive aspergillosis remains one of the most devastating fungal diseases and is predominantly linked to infections caused by the opportunistic human mold pathogen Aspergillus fumigatus. Major treatment regimens for the disease comprise the administration of antifungals belonging to the azole, polyene and echinocandin drug class. The prodrug 5-fluorocytosine (5FC), which is the only representative of a fourth class, the nucleobase analogs, shows unsatisfactory in vitro activities and is barely used for the treatment of aspergillosis. The main route of 5FC activation in A. fumigatus comprises its deamination into 5-fluorouracil (5FU) by FcyA, which is followed by Uprt-mediated 5FU phosphoribosylation into 5-fluorouridine monophosphate (5FUMP). In this study, we characterized and examined the role of a metabolic bypass that generates this nucleotide via 5-fluorouridine (5FUR) through uridine phosphorylase and uridine kinase activities. Resistance profiling of mutants lacking distinct pyrimidine salvage activities suggested a minor contribution of the alternative route in 5FUMP formation. We further analyzed the contribution of drug efflux in 5FC tolerance and found that A. fumigatus cells exposed to 5FC reduce intracellular fluoropyrimidine levels through their export into the environment. This release, which was particularly high in mutants lacking Uprt, generates a toxic environment for cytosine deaminase lacking mutants as well as mammalian cells. Employing the broad-spectrum fungal efflux pump inhibitor clorgyline, we demonstrate synergistic properties of this compound in combination with 5FC, 5FU as well as 5FUR.


Assuntos
Antineoplásicos , Aspergilose , Animais , Humanos , Flucitosina/farmacologia , Flucitosina/metabolismo , Flucitosina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antineoplásicos/farmacologia , Antimetabólitos , Fluoruracila/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica , Mamíferos
2.
Biotechnol Appl Biochem ; 71(1): 5-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743549

RESUMO

Suicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic-lethal drug. The application of the bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5-FC to 5-fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5-FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.


Assuntos
Citosina Desaminase , Pró-Fármacos , Humanos , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/metabolismo , Fluoruracila/química , Flucitosina/farmacologia , Flucitosina/metabolismo , Terapia Genética , Pró-Fármacos/metabolismo
3.
Int J Cancer ; 148(1): 128-139, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621791

RESUMO

Recently, we reported about exosomes possessing messenger RNA (mRNA) of suicide gene secreted from mesenchymal stem/stromal cells (MSCs) engineered to express the suicide gene-fused yeast cytosine deaminase::uracil phosphoribosyltransferase (yCD::UPRT). The yCD::UPRT-MSC exosomes are internalized by tumor cells and intracellularly convert prodrug 5-fluorocytosine (5-FC) to cytotoxic drug 5-fluorouracil (5-FU). Human tumor cells with the potential to metastasize release exosomes involved in the creation of a premetastatic niche at the predicted organs. We found that cancer cells stably transduced with yCD::UPRT gene by retrovirus infection released exosomes acting similarly like yCD::UPRT-MSC exosomes. Different types of tumor cells were transduced with the yCD::UPRT gene. The homogenous cell population of yCD::UPRT-transduced tumor cells expressed the yCD::UPRT suicide gene and secreted continuously exosomes with suicide gene mRNA in their cargo. All tumor cell suicide gene exosomes upon internalization into the recipient tumor cells induced the cell death by intracellular conversion of 5-FC to 5-FU and to 5-FUMP in a dose-dependent manner. Most of tumor cell-derived suicide gene exosomes were tumor tropic, in 5-FC presence they killed tumor cells but did not inhibit the growth of human skin fibroblast as well as DP-MSCs. Tumor cell-derived suicide gene exosomes home to their cells of origin and hold an exciting potential to become innovative specific therapy for tumors and potentially for metastases.


Assuntos
Antineoplásicos/uso terapêutico , Genes Transgênicos Suicidas , Terapia Genética/métodos , Neoplasias/terapia , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos/farmacologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Citosina Desaminase/genética , Exossomos/genética , Flucitosina/administração & dosagem , Flucitosina/metabolismo , Fluoruracila/metabolismo , Proteínas Fúngicas/genética , Vetores Genéticos/genética , Humanos , Camundongos , Pentosiltransferases/genética , Pró-Fármacos/metabolismo , Proteínas Recombinantes de Fusão/genética , Retroviridae/genética , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochem Biophys Res Commun ; 582: 137-143, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710829

RESUMO

Overexpression of HER2 is associated with cancer phenotypes, such as proliferation, survival, metastasis and angiogenesis, and has been validated as a therapeutic target. However, only a portion of patients benefited from anti-HER2 treatments, and many would develop resistance. A more effective HER2 targeted therapeutics is needed. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and a HER2-targeting scaffold protein, ZHER2:2891, fused with yeast cytosine deaminase (Fcy) to target HER2-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned the coding gene of ZHER2:2891 and fused with those of ABD (albumin-binding domain) and Fcy. The purified ZHER2:2891-ABD-Fcy fusion protein specifically binds to HER2 with a Kd value of 1.6 nM ZHER2:2891-ABD-Fcy binds to MDA-MB-468, SKOV-3, BT474, and MC38-HER2 cells, which overexpress HER2, whereas with a lower affinity to HER2 non-expresser, MC38. Correspondingly, the viability of HER2-expressing cells was suppressed by relative low concentrations of ZHER2:2891-ABD-Fcy in the presence of 5-FC, and the IC50 values of ZHER2:2891-ABD-Fcy for HER2 high-expresser cells were approximately 10-1000 fold lower than those of non-HER2-targeting Fcy, and ABD-Fcy. This novel prodrug system, ZHER2:2891-ABD-Fcy/5-FC, might become a promising addition to the existing class of therapeutics specifically target HER2-expressing cancers.


Assuntos
Antineoplásicos/farmacologia , Citosina Desaminase/genética , Pró-Fármacos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Antineoplásicos/química , Biotransformação , Linhagem Celular Tumoral , Citosina Desaminase/metabolismo , Flucitosina/metabolismo , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Expressão Gênica , Humanos , Concentração Inibidora 50 , Terapia de Alvo Molecular , Pró-Fármacos/química , Ligação Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672989

RESUMO

Epidermal growth factor receptor (EGFR) specific therapeutics is of great importance in cancer treatment. Fcy-hEGF fusion protein, composed of yeast cytosine deaminase (Fcy) and human EGF (hEGF), is capable of binding to EGFR and enzymatically convert 5-fluorocytosine (5-FC) to 1000-fold toxic 5-fluorocuracil (5-FU), thereby inhibiting the growth of EGFR-expressing tumor cells. To develop EGFR-specific therapy, 188Re-liposome-Fcy-hEGF was constructed by insertion of Fcy-hEGF fusion protein onto the surface of liposomes encapsulating of 188Re. Western blotting, MALDI-TOF, column size exclusion and flow cytometry were used to confirm the conjugation and bio-activity of 188Re-liposome-Fcy-hEGF. Cell lines with EGFR expression were subjected to treat with 188Re-liposome-Fcy-hEGF/5-FC in the presence of 5-FC. The 188Re-liposome-Fcy-hEGF/5-FC revealed a better cytotoxic effect for cancer cells than the treatment of liposome-Fcy-hEGF/5-FC or 188Re-liposome-Fcy-hEGF alone. The therapeutics has radio- and chemo-toxicity simultaneously and specifically target to EGFR-expression tumor cells, thereby achieving synergistic anticancer activity.


Assuntos
Citosina Desaminase/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fluoruracila/farmacologia , Neoplasias/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citosina Desaminase/química , Fator de Crescimento Epidérmico/química , Flucitosina/metabolismo , Fluoruracila/metabolismo , Humanos , Lipossomos/química , Células MCF-7 , Neoplasias/patologia , Ligação Proteica , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Rênio/química
6.
Int J Cancer ; 144(4): 897-908, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098225

RESUMO

The natural behavior of mesenchymal stem cells (MSCs) and their exosomes in targeting tumors is a promising approach for curative therapy. Human tumor tropic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dose-dependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. The presence of microRNAs in exosomes produced from naive MSCs and from suicide gene transduced MSCs did not differ significantly. MicroRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.


Assuntos
Exossomos/metabolismo , Genes Transgênicos Suicidas/genética , Terapia Genética/métodos , Células-Tronco Mesenquimais/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Exossomos/genética , Flucitosina/metabolismo , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Pró-Fármacos/metabolismo , Leveduras/genética , Leveduras/metabolismo
7.
BMC Cancer ; 19(1): 197, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832616

RESUMO

BACKGROUND: The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool. METHODS: Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice. RESULTS: 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 µM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals. CONCLUSIONS: We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Flucitosina/análogos & derivados , Fluoruracila/farmacologia , Genes Transgênicos Suicidas , Pró-Fármacos/farmacologia , Adenocarcinoma , Animais , Antimetabólitos Antineoplásicos/metabolismo , Neoplasias Encefálicas , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Citosina/análogos & derivados , Citosina/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacologia , Fluoruracila/metabolismo , Terapia Genética , Vetores Genéticos , Glioblastoma , Humanos , Lentivirus , Células-Tronco Mesenquimais , Camundongos , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Pró-Fármacos/metabolismo
8.
Bioorg Med Chem Lett ; 28(12): 2189-2194, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752184

RESUMO

DNA cytosine-5 methyltransferase (DNMT) catalyzes methylation at the C5 position of cytosine in the CpG sequence in double stranded DNA to give 5-methylCpG (mCpG) in the epigenetic regulation step in human cells. The entire reaction mechanism of DNMT is divided into six steps, which are scanning, recognition, flipping, loop locking, methylation, and releasing. The methylation and releasing mechanism are well-investigated; however, few reports are known about other reaction steps. To obtain insight into the reaction mechanism, we planned the incorporation of acyclic nucleosides, which make it easy to flip out the target nucleobase, into oligodeoxynucleotides (ODNs) and investigated the interaction between the ODN and DNMT. Here, we describe the design and synthesis of ODNs containing new acyclic 5-fluorocytosine nucleosides and their physiological and biological properties, including their interactions with DNMT. We found that the ODNs containing the acyclic 5-fluorocytosine nucleoside showed higher flexibility than those that contain 5-fluoro-2'-deoxycytidine. The observed flexibility of ODNs is expected to influence the scanning and recognition steps due to the decrease in helicity of the B-form.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA/química , Flucitosina/química , Nucleosídeos/química , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Flucitosina/metabolismo , Conformação Molecular , Nucleosídeos/metabolismo
9.
Bull Exp Biol Med ; 161(6): 808-810, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783293

RESUMO

Hybrid therapeutic gene FCU1 gene was cloned into a lentiviral expression vector and the therapeutic effect of its expression was studied in three pancreatic cancer cell lines. Expression of FCU1 gene sensitized cells of two of three studied pancreatic cancer cell lines to 5-fluorocytosine. In addition, uracil phosphoribosyl transferase activity of the hybrid FCU1 protein increased sensitivity of transfected cells of all three studied pancreatic cancer cell lines to 5-fluorouracil, a standard chemotherapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Citosina Desaminase/genética , Células Secretoras de Insulina/efeitos dos fármacos , Pentosiltransferases/genética , Proteínas Recombinantes de Fusão/genética , Linhagem Celular Tumoral , Citosina Desaminase/metabolismo , Resistencia a Medicamentos Antineoplásicos , Flucitosina/metabolismo , Flucitosina/farmacologia , Fluoruracila/farmacologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Lentivirus/genética , Lentivirus/metabolismo , Pentosiltransferases/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética
10.
Biochemistry ; 53(47): 7426-35, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25384249

RESUMO

5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a "discriminating" residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 10(5), 2.9 × 10(4), and 1.1 × 10(3) M(-1) s(-1), respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 10(5), 6.8 × 10(4), and 2.0 × 10(2) M(-1) s(-1), respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85 ), 5-fluorocytosine (PDB id: 4R88 ), and phosphonocytosine (PDB id: 4R7W ) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil.


Assuntos
5-Metilcitosina/metabolismo , Bactérias/enzimologia , Citosina Desaminase/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Linhagem Celular , Citosina Desaminase/química , Flucitosina/metabolismo , Flucitosina/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Timina/metabolismo
11.
J Gene Med ; 16(1-2): 11-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24436117

RESUMO

BACKGROUND: We previously developed an antibody-avidin fusion protein (ch128.1Av) specific for the human transferrin receptor 1 (TfR1; CD71) to be used as a delivery vector for cancer therapy and showed that ch128.1Av delivers the biotinylated plant toxin saporin-6 into malignant B cells. However, as a result of widespread expression of TfR1, delivery of the toxin to normal cells is a concern. Therefore, we explored the potential of a dual targeted lentiviral-mediated gene therapy strategy to restrict gene expression to malignant B cells. Targeting occurs through the use of ch128.1Av or its parental antibody without avidin (ch128.1) and through transcriptional regulation using an immunoglobulin promoter. METHODS: Flow cytometry was used to detect the expression of enhanced green fluorescent protein (EGFP) in a panel of cell lines. Cell viability after specific delivery of the therapeutic gene FCU1, a chimeric enzyme consisting of cytosine deaminase genetically fused to uracil phosphoribosyltransferse that converts the 5-fluorocytosine (5-FC) prodrug into toxic metabolites, was monitored using the MTS or WST-1 viability assay. RESULTS: We found that EGFP was specifically expressed in a panel of human malignant B-cell lines, but not in human malignant T-cell lines. EGFP expression was observed in all cell lines when a ubiquitous promoter was used. Furthermore, we show the decrease of cell viability in malignant plasma cells in the presence of 5-FC and the FCU1 gene. CONCLUSIONS: The present study demonstrates that gene expression can be restricted to malignant B cells and suggests that this dual targeted gene therapy strategy may help to circumvent the potential side effects of certain TfR1-targeted protein delivery approaches.


Assuntos
Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B/citologia , Lentivirus/genética , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Proteínas Recombinantes de Fusão/genética , Anticorpos/genética , Anticorpos/imunologia , Antígenos CD/biossíntese , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Citosina Desaminase/genética , Flucitosina/metabolismo , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Células Jurkat , Neoplasias/genética , Neoplasias/terapia , Pentosiltransferases/genética , Pró-Fármacos/efeitos adversos , Pró-Fármacos/uso terapêutico , Regiões Promotoras Genéticas , Receptores da Transferrina/biossíntese , Linfócitos T/citologia , Linfócitos T/metabolismo , Transdução Genética , Vírus da Estomatite Vesicular Indiana/genética
12.
J Phys Chem B ; 128(13): 3102-3112, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516924

RESUMO

The yeast cytosine deaminase (yCD) enzyme/5-fluorocytosine prodrug system is a promising candidate for targeted chemotherapeutics. After conversion of the prodrug into the toxic chemotherapeutic drug, 5-fluorouracil (5-FU), the slow product release from the enzyme limits the overall catalytic efficiency of the enzyme/prodrug system. Here, we present a computational study of the product release of the anticancer drug, 5-FU, from yCD using metadynamics. We present a comparison of the 5-FU drug to the natural enzyme product, uracil. We use volume-based metadynamics to compute the free energy landscape for product release and show a modest binding affinity for the product to the enzyme, consistent with experiments. Next, we use infrequent metadynamics to estimate the unbiased release rate from Kramers time-dependent rate theory and find a favorable comparison to experiment with a slower rate of product release for the 5-FU system. Our work demonstrates how adaptive sampling methods can be used to study the protein-ligand unbinding process for engineering enzyme/prodrug systems and gives insights into the molecular mechanism of product release for the yCD/5-FU system.


Assuntos
Antineoplásicos , Pró-Fármacos , Saccharomyces cerevisiae , Citosina Desaminase/química , Citosina Desaminase/metabolismo , Fluoruracila/metabolismo , Flucitosina/química , Flucitosina/metabolismo , Pró-Fármacos/química
13.
Mol Ther ; 20(9): 1689-98, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-22547150

RESUMO

Retroviral replicating vectors (RRVs) are a nonlytic alternative to oncolytic replicating viruses as anticancer agents, being selective both for dividing cells and for cells that have defects in innate immunity and interferon responsiveness. Tumor cells fit both these descriptions. Previous publications have described a prototype based on an amphotropic murine leukemia virus (MLV), encoding yeast cytosine deaminase (CD) that converts the prodrug 5-fluorocytosine (5-FC) to the potent anticancer drug, 5-fluorouracil (5-FU) in an infected tumor. We report here the selection of one lead clinical candidate based on a general design goal to optimize the genetic stability of the virus and the CD activity produced by the delivered transgene. Vectors were tested for titer, genetic stability, CD protein and enzyme activity, ability to confer susceptibility to 5-FC, and preliminary in vivo antitumor activity and stability. One vector, Toca 511, (aka T5.0002) encoding an optimized CD, shows a threefold increased specific activity in infected cells over infection with the prototype RRV and shows markedly higher genetic stability. Animal testing demonstrated that Toca 511 replicates stably in human tumor xenografts and, after 5-FC administration, causes complete regression of such xenografts. Toca 511 (vocimagene amiretrorepvec) has been taken forward to preclinical and clinical trials.


Assuntos
Terapia Genética/métodos , Vírus da Leucemia Murina/genética , Neoplasias Experimentais/terapia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacologia , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Estabilidade de RNA , Ratos , Transgenes
14.
Yao Xue Xue Bao ; 48(2): 261-8, 2013 Feb.
Artigo em Zh | MEDLINE | ID: mdl-23672024

RESUMO

5-Flucytosine (5-FC) could be changed to 5-fluorouracil (5-FU) by cytosine deaminase (CD), the latter is able to kill cancer cells. However, there is no efficient method to deliver the CD gene into the tumor cells, which hampers the application of the suicide gene system. In this experiment, for the first time, the NDV has been utilized as a vector to deliver the CD gene into the cancer cells, the virus can infect the cancer cells specifically, replicate and assemble, while the cytosine deaminase is expressed. Then the CD converts the prodrug 5-FC into 5-FU to achieve the purpose of inhibiting tumor. Firstly, the whole genome of E. coli JM109 was extracted, and the CD gene was obtained by cloning method. Then the CD and IRES-EGFP were ligated into the pEE12.4 expression vector to become a recombinant pEE12.4IE-CD eukaryotic expression plasmid. The human liver cancer cells were transfected with the plasmid. The cells were treated with different concentrations of 5-FC, MTT method was used to determine the killing effect of CD/5-FC system on the human liver cancer cells. The cell deaths were 18.07%, 42.98% and 62.20% respectively when the concentrations of prodrug were at 10, 20 and 30 mmol x L(-1). In 5-FC acute toxicity experiment, Kunming mice were injected with different concentrations of 5-FC at intervals of 1:0.5. The LD50 of 5-FC through iv injection was determined by improved Karber's method, the LD50 was 507 mg x kg(-1) and the 95% confidence limit was 374-695 mg x kg(-1). According to the maximum LD0 dose of the LD50, the maximum safe dose was 200 mg x kg(-1). Body weight and clinic symptoms of the experimental animals were observed. These results laid the foundation to verify the antitumor effect and safety of CD/5-FC system in animal models. The CD gene was ligated into the NDV (rClone30) carrier, then the tumor-bearing animal was established to perform the tumor inhibiting experiment. The result showed that the recombinant rClone30-CD/5-FC system has a high antitumor activity in vivo. To summarize, CD gene has been cloned and its bioactivity has been confirmed in the mammalian cells. It is the first time in this study to utilize the recombinant NDV to deliver the CD gene into the tumor cells; our result proves the rClone30-CD/5-FC system is a potential method for cancer therapy.


Assuntos
Morte Celular/efeitos dos fármacos , Citosina Desaminase , Flucitosina , Fluoruracila , Neoplasias Hepáticas Experimentais/patologia , Animais , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Embrião de Galinha , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacologia , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Vetores Genéticos , Células Hep G2 , Humanos , Dose Letal Mediana , Camundongos , Vírus da Doença de Newcastle/genética , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos
15.
mBio ; 14(1): e0345122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656038

RESUMO

Flucytosine (5-FC) is an antifungal agent commonly used for treatment of cryptococcosis and several other systemic mycoses. In fungi, cytosine permease and cytosine deaminase are known major players in flucytosine resistance by regulating uptake and deamination of 5-FC, respectively. Cryptococcus species have three paralogs each of cytosine permease (FCY2, FCY3, and FCY4) and cytosine deaminase (FCY1, FCY5 and FCY6). As in other fungi, we found FCY1 and FCY2 to be the primary cytosine deaminase and permease gene, respectively, in C. neoformans H99 (VNI), C. gattii R265 (VGIIa) and WM276 (VGI). However, when various amino acids were used as the sole nitrogen source, C. neoformans and C. gattii diverged in the function of FCY3 and FCY6. Though there was some lineage-dependent variability, the two genes functioned as the secondary permease and deaminase, respectively, only in C. gattii when the nitrogen source was arginine, asparagine, or proline. Additionally, the expression of FCY genes, excluding FCY1, was under nitrogen catabolic repression in the presence of NH4. Functional analysis of GAT1 and CIR1 gene deletion constructs demonstrated that these two genes regulate the expression of each permease and deaminase genes individually. Furthermore, the expression levels of FCY3 and FCY6 under different amino acids corroborated the 5-FC susceptibility in fcy2Δ or fcy1Δ background. Thus, the mechanism of 5-FC resistance in C. gattii under diverse nitrogen conditions is orchestrated by two transcription factors of GATA family, cytosine permease and deaminase genes. IMPORTANCE 5-FC is a commonly used antifungal drug for treatment of cryptococcosis caused by Cryptococcus neoformans and C. gattii species complexes. When various amino acids were used as the sole nitrogen source for growth, we found lineage dependent differences in 5-FC susceptibility. Deletion of the classical cytosine permease (FCY2) and deaminase (FCY1) genes caused increased 5-FC resistance in all tested nitrogen sources in C. neoformans but not in C. gattii. Furthermore, we demonstrate that the two GATA family transcription factor genes GAT1 and CIR1 are involved in the nitrogen-source dependent 5-FC resistance by regulating the expression of the paralogs of cytosine permease and deaminase genes. Our study not only identifies the new function of paralogs of the cytosine permease and deaminase and the role of their regulatory transcription factors but also denotes the differences in the mechanism of 5-FC resistance among the two etiologic agents of cryptococcosis under different nitrogen sources.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Flucitosina/farmacologia , Flucitosina/metabolismo , Nitrogênio/metabolismo , Citosina Desaminase/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus gattii/genética , Criptococose/microbiologia , Aminoácidos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Transcrição/metabolismo , Testes de Sensibilidade Microbiana
16.
Biochemistry ; 51(1): 475-86, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22208667

RESUMO

Yeast cytosine deaminase (yCD) catalyzes the hydrolytic deamination of cytosine to uracil as well as the deamination of the prodrug 5-fluorocytosine (5FC) to the anticancer drug 5-fluorouracil. In this study, the role of Glu64 in the activation of the prodrug 5FC was investigated by site-directed mutagenesis, biochemical, nuclear magnetic resonance (NMR), and computational studies. Steady-state kinetics studies showed that the mutation of Glu64 causes a dramatic decrease in k(cat) and a dramatic increase in K(m), indicating Glu64 is important for both binding and catalysis in the activation of 5FC. (19)F NMR experiments showed that binding of the inhibitor 5-fluoro-1H-pyrimidin-2-one (5FPy) to the wild-type yCD causes an upfield shift, indicating that the bound inhibitor is in the hydrated form, mimicking the transition state or the tetrahedral intermediate in the activation of 5FC. However, binding of 5FPy to the E64A mutant enzyme causes a downfield shift, indicating that the bound 5FPy remains in an unhydrated form in the complex with the mutant enzyme. (1)H and (15)N NMR analysis revealed trans-hydrogen bond D/H isotope effects on the hydrogen of the amide of Glu64, indicating that the carboxylate of Glu64 forms two hydrogen bonds with the hydrated 5FPy. ONIOM calculations showed that the wild-type yCD complex with the hydrated form of the inhibitor 1H-pyrimidin-2-one is more stable than the initial binding complex, and in contrast, with the E64A mutant enzyme, the hydrated inhibitor is no longer favored and the conversion has a higher activation energy, as well. The hydrated inhibitor is stabilized in the wild-type yCD by two hydrogen bonds between it and the carboxylate of Glu64 as revealed by (1)H and (15)N NMR analysis. To explore the functional role of Glu64 in catalysis, we investigated the deamination of cytosine catalyzed by the E64A mutant by ONIOM calculations. The results showed that without the assistance of Glu64, both proton transfers before and after the formation of the tetrahedral reaction intermediate become partially rate-limiting steps. The results of the experimental and computational studies together indicate that Glu64 plays a critical role in both the binding and the chemical transformation in the conversion of the prodrug 5FC to the anticancer drug 5-fluorouracil.


Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Flucitosina/química , Ácido Glutâmico/química , Pró-Fármacos/química , Saccharomyces cerevisiae/enzimologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Simulação por Computador , Cristalografia por Raios X , Citosina Desaminase/genética , Desaminação/genética , Ativação Enzimática/genética , Flucitosina/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/fisiologia , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Pró-Fármacos/metabolismo , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Especificidade por Substrato/genética
17.
J Gene Med ; 14(12): 776-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23150190

RESUMO

BACKGROUND: Engineered mesenchymal stromal cells (MSC) have been used in many preclinical studies of gene directed enzyme/prodrug therapy. We aimed to compare the efficacy of two most frequently used systems, as well as evaluate the extent of a bystander effect mediated by therapeutic MSC towards cell lines derived from different tumours. METHODS: Two approaches were compared: (i) herpes simplex virus thymidine kinase (TK)/ganciclovir (GCV) and (ii) yeast cytosine deaminase fused with uracil phosphoribosyltransferase (CD::UPRT)/5-fluorocytosine (5-FC). The cytotoxic effect mediated by therapeutic MSC was evaluated in direct co-culture by a fluorimetric assay. The expression profile of tumour cells was analyzed by a quantitative polymerase chain reaction, and the ability of gap-junctional intercellular communication (GJIC) was evaluated by a dye transfer assay. RESULTS: Both systems were effective only on glioblastoma cells (8-MG-BA). The CD::UPRT-MSC/5-FC system showed efficiency on melanoma A375 cells. We decreased the sensitivity of 8-MG-BA cells and A375 cells to the CD::UPRT-MSC/5-FC system by pharmacological inhibition of thymidylate synthase, and we achieved a similar result in A375 cells by inhibition of thymidine phosphorylase. Although we demonstrated functional GJIC in A375 cells, TK-MSC were ineffective in mediating the bystander effect similarly to HeLa cells, which were also relatively resistant to CD::UPRT-MSC/5-FC treatment. TK-MSC/GCV treatment had a strong cytotoxic effect on MDA-MB-231 cells (breast carcinoma), whereas CD::UPRT-MSC/5-FC treatment failed as a result of overexpression of the gene for ABCC11. Transfection of the MDA-MB-231 cell line with small interference RNA specific to ABCC11 led to a significantly increased sensitivity to the CD::UPRT-MSC/5-FC approach. CONCLUSIONS: GJIC, expression of enzymes involved in drug metabolism and ABC transporters correlate with the response of tumour cells to treatment by MSC-expressing prodrug-converting genes.


Assuntos
Efeito Espectador , Células-Tronco Mesenquimais/metabolismo , Pentosiltransferases/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Comunicação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Flucitosina/metabolismo , Flucitosina/farmacologia , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Junções Comunicantes/metabolismo , Expressão Gênica , Inativação Gênica , Vetores Genéticos/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Pentosiltransferases/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Retroviridae/genética , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transdução Genética
18.
Int J Mol Sci ; 13(10): 12519-32, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23202910

RESUMO

The risk of prostate cancer has been increasing in men by degrees. To develop a new prostate cancer therapy, we used a stem cell-derived gene directed prodrug enzyme system using human neural stem cells (hNSCs) that have a tumor-tropic effect. These hNSCs were transduced with the therapeutic genes for bacterial cytosine deaminase (CD), alone or in combination with the one encoding human interferon-beta (IFN-ß) or rabbit carboxyl esterase (CE) to generate HB1.F3.CD, HB1.F3.CD.IFN-ß, and HB1.F3.CE cells, respectively. CD enzyme can convert the prodrug 5-fluorocytosine (5-FC) into the activated form 5-fluorouracil (5-FU). In addition, CE enzyme can convert the prodrug CPT-11 into a toxic agent, SN-38. In our study, the human stem cells were found to migrate toward LNCaP human prostate cancer cells rather than primary cells. This phenomenon may be due to interactions between chemoattractant ligands and receptors, such as VEGF/VEGFR2 and SCF/c-Kit, expressed as cancer and stem cells, respectively. The HB1.F3.CE, HB.F3.CD, or HB1.F3.CD.IFN-ß cells significantly reduced the LNCaP cell viability in the presence of the prodrugs 5-FC or CPT-11. These results indicate that stem cells expressing therapeutic genes can be used to develop a new strategy for selectively treating human prostate cancer.


Assuntos
Carboxilesterase/metabolismo , Citosina Desaminase/metabolismo , Interferon beta/metabolismo , Células-Tronco/metabolismo , Animais , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/metabolismo , Camptotecina/toxicidade , Carboxilesterase/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citosina Desaminase/genética , Flucitosina/química , Flucitosina/metabolismo , Fluoruracila/química , Fluoruracila/metabolismo , Fluoruracila/toxicidade , Engenharia Genética , Humanos , Interferon beta/genética , Irinotecano , Masculino , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Coelhos , Células-Tronco/citologia
19.
Vet Comp Oncol ; 20(2): 372-380, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34724324

RESUMO

We tested the efficacy of a yeast cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine (CDU/5-FC) non-viral suicide system on eight established canine melanoma cell lines. Albeit with different degree of sensitivity 5 days after lipofection, this system was significantly efficient killing melanoma cells, being four cell lines highly, two fairly and two not very sensitive to CDU/5-FC (their respective IC50 ranging from 0.20 to 800 µM 5-FC). Considering the relatively low lipofection efficiencies, a very strong bystander effect was verified in the eight cell lines: depending on the cell line, this effect accounted for most of the induced cell death (from 70% to 95%). In our assay conditions, we did not find useful interactions either with the herpes simplex thymidine kinase/ganciclovir suicide system (in sequential or simultaneous modality) or with cisplatin and bleomycin chemotherapeutic drugs. Furthermore, only two cell lines displayed limited useful interactions of the CDU/5-FC either with interferon-ß gene transfer or the proteasome inhibitor bortezomib respectively. These results would preclude a wide use of these combinations. However, the fact that all the tested cells were significantly sensitive to the CDU/5-FC system encourages further research as a gene therapy tool for local control of canine melanoma.


Assuntos
Doenças do Cão , Melanoma , Pentosiltransferases , Animais , Cães , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Doenças do Cão/tratamento farmacológico , Flucitosina/metabolismo , Flucitosina/farmacologia , Flucitosina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/veterinária , Pentosiltransferases/metabolismo , Timidina Quinase/genética , Uracila , Morte Celular
20.
Biotechnol J ; 17(10): e2200088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35509114

RESUMO

The chloroplast represents an attractive compartment for light-driven biosynthesis of recombinant products, and advanced synthetic biology tools are available for engineering the chloroplast genome ( = plastome) of several algal and plant species. However, producing commercial lines will likely require several plastome manipulations. This presents issues with respect to selectable markers, since there are a limited number available, they can be used only once in a serial engineering strategy, and it is undesirable to retain marker genes for antibiotic resistance in the final transplastome. To address these problems, we have designed a rapid iterative selection system, known as CpPosNeg, for the green microalga Chlamydomonas reinhardtii that allows creation of marker-free transformants starting from wild-type strains. The system employs a dual marker encoding a fusion protein of E. coli aminoglycoside adenyltransferase (AadA: conferring spectinomycin resistance) and a variant of E. coli cytosine deaminase (CodA: conferring sensitivity to 5-fluorocytosine). Initial selection on spectinomycin allows stable transformants to be established and driven to homoplasmy. Subsequent selection on 5-fluorocytosine results in rapid loss of the dual marker through intramolecular recombination between the 3'UTR of the marker and the 3'UTR of the introduced transgene. We demonstrate the versatility of the CpPosNeg system by serial introduction of reporter genes into the plastome.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Regiões 3' não Traduzidas , Aminoglicosídeos , Biomarcadores/metabolismo , Chlamydomonas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/genética , Flucitosina/metabolismo , Espectinomicina/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA