Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606905

RESUMO

The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.


Assuntos
Tamanho Corporal , Focas Verdadeiras , Termogênese , Proteína Desacopladora 1 , Animais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Termogênese/genética , Focas Verdadeiras/genética , Evolução Molecular , Phoca/genética
2.
Environ Res ; 244: 117839, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081340

RESUMO

Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.


Assuntos
Mercúrio , Focas Verdadeiras , Selênio , Oligoelementos , Poluentes Químicos da Água , Animais , Humanos , Oligoelementos/metabolismo , Cádmio/toxicidade , Cádmio/análise , Selênio/metabolismo , Poluentes Químicos da Água/análise , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Mercúrio/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica , Interleucinas/genética , Interleucinas/metabolismo
3.
Mol Ecol ; 32(22): 5932-5943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855154

RESUMO

The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.


Assuntos
Focas Verdadeiras , Animais , Focas Verdadeiras/genética , Canadá , Mamíferos , Regiões Árticas , Groenlândia
4.
Dokl Biol Sci ; 511(1): 247-250, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833580

RESUMO

Nucleotide sequence diversity in two mtDNA loci (the cytochrome b gene and the control region) was for the first time studied in the Baikal seal Pusa sibirica with the use of several spatiotemporal samples. The population was found to be evolutionarily young and to be in the stage of demographic expansion.


Assuntos
Focas Verdadeiras , Animais , Focas Verdadeiras/genética , Sequência de Bases
5.
Proc Biol Sci ; 289(1981): 20220846, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043283

RESUMO

Disentangling the impact of Late Quaternary climate change from human activities can have crucial implications on the conservation of endangered species. We investigated the population genetics and demography of the Mediterranean monk seal (Monachus monachus), one of the world's most endangered marine mammals, through an unprecedented dataset encompassing historical (extinct) and extant populations from the eastern North Atlantic to the entire Mediterranean Basin. We show that Cabo Blanco (Western Sahara/Mauritania), Madeira, Western Mediterranean (historical range) and Eastern Mediterranean regions segregate into four populations. This structure is probably the consequence of recent drift, combined with long-term isolation by distance (R2 = 0.7), resulting from prevailing short-distance (less than 500 km) and infrequent long-distance dispersal (less than 1500 km). All populations (Madeira especially), show high levels of inbreeding and low levels of genetic diversity, seemingly declining since historical time, but surprisingly not being impacted by the 1997 massive die-off in Cabo Blanco. Approximate Bayesian Computation analyses support scenarios combining local extinctions and a major effective population size decline in all populations during Antiquity. Our results suggest that the early densification of human populations around the Mediterranean Basin coupled with the development of seafaring techniques were the main drivers of the decline of Mediterranean monk seals.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Teorema de Bayes , Cetáceos , Espécies em Perigo de Extinção , Variação Genética , Humanos , Região do Mediterrâneo , Focas Verdadeiras/genética
6.
BMC Neurosci ; 23(1): 59, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243678

RESUMO

BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.


Assuntos
Fármacos Neuroprotetores , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Clusterina/genética , Furões/genética , Furões/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Transcriptoma
7.
Heredity (Edinb) ; 127(1): 35-51, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33927365

RESUMO

Individual variation in quantitative traits clearly influence many ecological and evolutionary processes. Moderate to high heritability estimates of personality and life-history traits suggest some level of genetic control over these traits. Yet, we know very little of the underlying genetic architecture of phenotypic variation in the wild. In this study, we used a candidate gene approach to investigate the association of genetic variants with repeated measures of boldness and maternal performance traits (weaning mass and lactation duration) collected over an 11- and 28-year period, respectively, in a free-ranging population of grey seals on Sable Island National Park Reserve, Canada. We isolated and re-sequenced five genes: dopamine receptor D4 (DRD4), serotonin transporter (SERT), oxytocin receptor (OXTR), and melanocortin receptors 1 (MC1R) and 5 (MC5R). We discovered single nucleotide polymorphisms (SNPs) in each gene; and, after accounting for loci in linkage disequilibrium and filtering due to missing data, we were able to test for genotype-phenotype relationships at seven loci in three genes (DRD4, SERT, and MC1R). We tested for association between these loci and traits of 180 females having extreme shy-bold phenotypes using mixed-effects models. One locus within SERT was significantly associated with boldness (effect size = 0.189) and a second locus within DRD4 with weaning mass (effect size = 0.232). Altogether, genotypes explained 6.52-13.66% of total trait variation. Our study substantiates SERT and DRD4 as important determinants of behaviour, and provides unique insight into the molecular mechanisms underlying maternal performance variation in a marine predator.


Assuntos
Focas Verdadeiras , Animais , Feminino , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Focas Verdadeiras/genética
8.
BMC Genomics ; 21(1): 303, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293246

RESUMO

BACKGROUND: The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. RESULTS: Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. CONCLUSIONS: Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.


Assuntos
Adaptação Fisiológica/genética , Hipóxia Celular/genética , Mergulho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/metabolismo , Oxigênio/metabolismo , Focas Verdadeiras/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Encéfalo/metabolismo , Hipóxia Celular/fisiologia , Evolução Molecular , Ontologia Genética , Coração/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Família Multigênica , Músculos/metabolismo , Neovascularização Fisiológica/genética , Óxido Nítrico/metabolismo , Plasma/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/crescimento & desenvolvimento , Transdução de Sinais/genética
9.
Physiol Genomics ; 50(7): 495-503, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625017

RESUMO

The physiological and cellular adaptations to extreme fasting in northern elephant seals ( Mirounga angustirostris, NES) are remarkable and may help to elucidate endocrine mechanisms that regulate lipid metabolism and energy homeostasis in mammals. Recent studies have highlighted the importance of thyroid hormones in the maintenance of a lipid-based metabolism during prolonged fasting in weaned NES pups. To identify additional molecular regulators of fasting, we used a transcriptomics approach to examine changes in global gene expression profiles before and after 6-8 wk of fasting in weaned NES pups. We produced a de novo assembly and identified 98 unique protein-coding genes that were differentially expressed between early and late fasting. Most of the downregulated genes were associated with lipid, carbohydrate, and protein metabolism. A number of downregulated genes were also associated with maintenance of the extracellular matrix, consistent with tissue remodeling during weight loss and the multifunctional nature of blubber tissue, which plays both metabolic and structural roles in marine mammals. Using this data set, we predict potential mechanisms by which NES pups sustain metabolism and regulate adipose stores throughout the fast, and provide a valuable resource for additional studies of extreme metabolic adaptations in mammals.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Focas Verdadeiras/genética , Transcriptoma , Adiposidade/genética , Animais , Metabolismo dos Carboidratos/genética , Metabolismo Energético/genética , Jejum , Metabolismo dos Lipídeos/genética , Proteoma/genética , Focas Verdadeiras/metabolismo , Desmame
10.
J Hered ; 108(6): 618-627, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821186

RESUMO

The northern elephant seal, Mirounga angustirostris, was heavily hunted and declared extinct in the 19th century. However, a colony remained on remote Guadalupe Island, Mexico and the species has since repopulated most of its historical distribution. Here, we present a comprehensive evaluation of genetic variation in the species. First, we assess the effect of the demographic bottleneck on microsatellite variability and compare it with that found in other pinnipeds, demonstrating levels of variation similar to that in species that continue to be threatened with extinction. Next, we use sequence data from these markers to demonstrate that some of the limited polymorphism predates the bottleneck. However, most contemporary variation appears to have arisen recently and persisted due to exponential growth. We also describe how we use the range in allele size of microsatellites to estimate ancestral effective population size before the bottleneck, demonstrating a large reduction in effective size. We then employ a classical method for bacteria to estimate the microsatellite mutation rate in the species, deriving an estimate that is extremely similar to that estimated for a similar set of loci in humans, indicating consistency of microsatellite mutation rates in mammals. Finally, we find slight significant structure between some geographically separated colonies, although its biological significance is unclear. This work demonstrates that genetic analysis can be useful for evaluating the population biology of the northern elephant seal, in spite of the bottleneck that removed most genetic variation from the species.


Assuntos
Variação Genética , Genética Populacional , Focas Verdadeiras/genética , Alelos , Animais , Sequência de Bases , California , Frequência do Gene , México , Repetições de Microssatélites , Taxa de Mutação , Densidade Demográfica , Análise de Sequência de DNA
11.
BMC Genomics ; 17: 583, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507242

RESUMO

BACKGROUND: During long dives, the brain of whales and seals experiences a reduced supply of oxygen (hypoxia). The brain neurons of the hooded seal (Cystophora cristata) are more tolerant towards low-oxygen conditions than those of mice, and also better survive other hypoxia-related stress conditions like a reduction in glucose supply and high concentrations of lactate. Little is known about the molecular mechanisms that support the hypoxia tolerance of the diving brain. RESULTS: Here we employed RNA-seq to approach the molecular basis of the unusual stress tolerance of the seal brain. An Illumina-generated transcriptome of the visual cortex of the hooded seal was compared with that of the ferret (Mustela putorius furo), which served as a terrestrial relative. Gene ontology analyses showed a significant enrichment of transcripts related to translation and aerobic energy production in the ferret but not in the seal brain. Clusterin, an extracellular chaperone, is the most highly expressed gene in the seal brain and fourfold higher than in the ferret or any other mammalian brain transcriptome. The largest difference was found for S100B, a calcium-binding stress protein with pleiotropic function, which was 38-fold enriched in the seal brain. Notably, significant enrichment of S100B mRNA was also found in the transcriptomes of whale brains, but not in the brains of terrestrial mammals. CONCLUSION: Comparative transcriptomics indicates a lower aerobic capacity of the seal brain, which may be interpreted as a general energy saving strategy. Elevated expression of stress-related genes, such as clusterin and S100B, possibly contributes to the remarkable hypoxia tolerance of the brain of the hooded seal. Moreover, high levels of S100B that possibly protect the brain appear to be the result of the convergent adaptation of diving mammals.


Assuntos
Encéfalo/metabolismo , Mergulho , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Animais , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mamíferos , Anotação de Sequência Molecular , Transcriptoma , Córtex Visual/metabolismo
12.
J Evol Biol ; 29(9): 1667-79, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27012933

RESUMO

Understanding observed patterns of connectivity requires an understanding of the evolutionary processes that determine genetic structure among populations, with the most common models being associated with isolation by distance, allopatry or vicariance. Pinnipeds are annual breeders with the capacity for extensive range overlap during seasonal migrations, establishing the potential for the evolution of isolation by distance. Here, we assess the pattern of differentiation among six breeding colonies of the southern elephant seal, Mirounga leonina, based on mtDNA and 15 neutral microsatellite DNA markers, and consider measures of their demography and connectivity. We show that all breeding colonies are genetically divergent and that connectivity in this highly mobile pinniped is not strongly associated with geographic distance, but more likely linked to Holocene climate change and demographic processes. Estimates of divergence times between populations were all after the last glacial maximum, and there was evidence for directional migration in a clockwise pattern (with the prevailing current) around the Antarctic. We discuss the mechanisms by which climate change may have contributed to the contemporary genetic structure of southern elephant seal populations and the broader implications.


Assuntos
Mudança Climática , Genética Populacional , Focas Verdadeiras/genética , Animais , Regiões Antárticas , DNA Mitocondrial , Repetições de Microssatélites
13.
Artigo em Inglês | MEDLINE | ID: mdl-26924792

RESUMO

Northern elephant seals experience conditions that increase oxidative stress (OS), including extended fasting, ischemia and hypoxia during breath-holds, and immune responses during colonial breeding. Increased OS is suggested by increases in tissue and plasma concentrations of pro-oxidant enzymes NADPH oxidase and xanthine oxidase (XO). Serum cortisol concentrations were positively associated with XO concentrations and damage markers. Elephant seals exhibit robust anti-oxidant responses as evidenced by increases in anti-oxidant enzymes in plasma and tissues. These responses were sufficient to prevent oxidative damage during breath-holds and extended fasts in juveniles. However, high rates of energy expenditure during breeding were associated with increased evidence for oxidative damage to lipids, proteins and DNA in adults. We integrated investigations of the fasting metabolome and muscle and blubber transcriptomes into our oxidative stress studies. Non-targeted metabolomics analysis of fasting seals identified 227 known metabolites in plasma, including those related to glutathione and purine metabolism. Changes in plasma metabolites suggested that glutathione biosynthesis increased during fasting in weaned pups but not in lactating females. We produced the first reference sequence for elephant seals by RNA sequencing of skeletal muscle and adipose tissue transcriptomes and de novo transcriptome assembly. We annotated muscle and adipose transcripts and identified thousands of genes, including potential mediators of OS. This resource provides elephant seal-specific gene sequences, complements existing metabolite and protein expression studies and provides tools for examining cellular responses to OS in a variety of contexts. We examined changes in tissue gene expression in response to experimental elevation of plasma cortisol. Responses included downregulation of Negative Regulator of Reactive Oxygen Species (NRROS) in muscle, a regulator that limits reactive oxygen species production by tissues. These tools provide novel views of the cellular and systemic mechanisms that enable seals to tolerate high levels of OS.


Assuntos
Perfilação da Expressão Gênica/métodos , Metaboloma , Metabolômica/métodos , Estresse Oxidativo , Focas Verdadeiras/metabolismo , Transcriptoma , Tecido Adiposo/metabolismo , Animais , Antioxidantes/metabolismo , Cruzamento , Metabolismo Energético/genética , Jejum/sangue , Jejum/metabolismo , Feminino , Hidrocortisona/sangue , Masculino , Músculo Esquelético/metabolismo , NADPH Oxidases/sangue , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Focas Verdadeiras/genética , Xantina Oxidase/sangue , Xantina Oxidase/metabolismo
14.
Physiol Genomics ; 47(8): 318-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26038394

RESUMO

While much of our understanding of stress physiology is derived from biomedical studies, little is known about the downstream molecular consequences of adaptive stress responses in free-living animals. We examined molecular effectors of the stress hormones cortisol and aldosterone in the northern elephant seal, a free-ranging study system in which extreme physiological challenges and cortisol fluctuations are a routine part of life history. We stimulated the neuroendocrine stress axis by administering exogenous adrenocorticotropic hormone (ACTH) and examined the resultant effects by measuring corticosteroid hormones, metabolites, and gene expression before, during, and following administration. ACTH induced an elevation in cortisol, aldosterone, glucose, and fatty acids within 2 h, with complete recovery observed within 24 h of administration. The global transcriptional response of elephant seal muscle tissue to ACTH was evaluated by transcriptomics and involved upregulation of a highly coordinated network of conserved glucocorticoid (GC) target genes predicted to promote metabolic substrate availability without causing deleterious effects seen in laboratory animals. Transcriptional recovery from ACTH was characterized by downregulation of GC target genes and restoration of cell proliferation, metabolism, and tissue maintenance pathways within 24 h. Differentially expressed genes included several adipokines not previously described in muscle, reflecting unique metabolic physiology in fasting-adapted animals. This study represents one of the first transcriptome analyses of cellular responses to hypothalamic-pituitary-adrenal axis stimulation in a free-living marine mammal and suggests that compensatory, tissue-sparing mechanisms may enable marine mammals to maintain cortisol and aldosterone sensitivity while avoiding deleterious long-term consequences of stress.


Assuntos
Hormônio Adrenocorticotrópico/administração & dosagem , Hormônio Adrenocorticotrópico/farmacologia , Músculos/efeitos dos fármacos , Músculos/metabolismo , Focas Verdadeiras/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Sistema Endócrino/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Masculino , Focas Verdadeiras/genética , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
BMC Genomics ; 16: 64, 2015 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-25758323

RESUMO

BACKGROUND: The northern elephant seal, Mirounga angustirostris, is a valuable animal model of fasting adaptation and hypoxic stress tolerance. However, no reference sequence is currently available for this and many other marine mammal study systems, hindering molecular understanding of marine adaptations and unique physiology. RESULTS: We sequenced a transcriptome of M. angustirostris derived from muscle sampled during an acute stress challenge experiment to identify species-specific markers of stress axis activation and recovery. De novo assembly generated 164,966 contigs and a total of 522,699 transcripts, of which 68.70% were annotated using mouse, human, and domestic dog reference protein sequences. To reduce transcript redundancy, we removed highly similar isoforms in large gene families and produced a filtered assembly containing 336,657 transcripts. We found that a large number of annotated genes are associated with metabolic signaling, immune and stress responses, and muscle function. Preliminary differential expression analysis suggests a limited transcriptional response to acute stress involving alterations in metabolic and immune pathways and muscle tissue maintenance, potentially driven by early response transcription factors such as Cebpd. CONCLUSIONS: We present the first reference sequence for Mirounga angustirostris produced by RNA sequencing of muscle tissue and cloud-based de novo transcriptome assembly. We annotated 395,102 transcripts, some of which may be novel isoforms, and have identified thousands of genes involved in key physiological processes. This resource provides elephant seal-specific gene sequences, complementing existing metabolite and protein expression studies and enabling future work on molecular pathways regulating adaptations such as fasting, hypoxia, and environmental stress responses in marine mammals.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Músculos/metabolismo , Focas Verdadeiras/genética , Animais , Cães , Expressão Gênica/genética , Humanos , Camundongos , Músculos/fisiologia , Focas Verdadeiras/fisiologia
16.
Proc Biol Sci ; 281(1779): 20133078, 2014 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24478305

RESUMO

Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.


Assuntos
Efeito Fundador , Focas Verdadeiras/genética , Adaptação Biológica/genética , Animais , Teorema de Bayes , Evolução Biológica , Extinção Biológica , Feminino , Deriva Genética , Dinâmica Populacional
17.
Mol Ecol ; 23(16): 3999-4017, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25041117

RESUMO

Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate-driven changes in habitat availability and anthropogenic exploitation. We therefore analysed samples from over 1500 individuals collected from 22 colonies spanning the Western and Eastern Atlantic and the Baltic Sea regions, represented by 350 bp of the mitochondrial hypervariable region and up to nine microsatellites. Strong population structure was observed at both types of marker, and highly asymmetrical patterns of gene flow were also inferred, with the Orkney Islands being identified as a source of emigrants to other areas in the Eastern Atlantic. The Baltic and Eastern Atlantic regions were estimated to have diverged a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes in habitat availability.


Assuntos
Fluxo Gênico , Genética Populacional , Focas Verdadeiras/genética , Animais , Oceano Atlântico , Teorema de Bayes , DNA Mitocondrial/genética , Ecossistema , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
J Anim Ecol ; 83(5): 1158-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24673453

RESUMO

Although the quantification of individual heterogeneity in wild populations' vital rates has recently attracted growing interest among ecologists, the investigation of its evolutionary consequences remains limited, mainly because of the difficulties in assessing fitness and heritability from field studies on free-ranging animals. In the presence of individual variability, evaluation of fitness consequences can notably be complicated by the existence of trade-offs among different vital rates. In this study, to further assess the evolutionary significance of previously quantified levels of individual heterogeneity in female Weddell seal (Leptonychotes weddellii Lesson) reproductive rates (Chambert et al. ), we investigated how several life-history characteristics of female offspring were related to their mother's reproductive rate, as well as to other maternal traits (age and experience) and environmental conditions at birth. The probability and age of first reproduction (recruitment) of female offspring was not related to their mother's reproductive rate, suggesting the absence of a maternal trade-off between the number and quality of offspring a female produces. Evidence of a positive, but relatively weak, relationship between the reproductive rates of a mother and her female offspring was found, suggesting some degree of heritability in this trait. Using a simulation approach based on these statistical findings, we showed that substantial differences in the number of grandchildren, produced through female progeny, can be expected among females with different reproductive rates. Despite the presence of substantial stochastic variability, due to environmental fluctuations and other unidentified mechanisms, and in the light of the fact that the metrics obtained do not provide a full measure of real fitness, our results do suggest that the individual reproductive variability found in female Weddell seals could potentially have important fitness consequences.


Assuntos
Evolução Biológica , Reprodução/fisiologia , Focas Verdadeiras/fisiologia , Fatores Etários , Animais , Regiões Antárticas , Feminino , Fertilidade , Aptidão Genética , Modelos Estatísticos , Reprodução/genética , Focas Verdadeiras/genética
19.
J Anim Ecol ; 83(5): 1003-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26050743

RESUMO

Chambert, Rotella & Garrott () used long-term data to assess the evolutionary significance of individual latent reproductive rate in female Weddell seals. Latent reproductive rates capture the differences among individuals in terms of their propensity to breed; they are conceptual and mathematical constructs. Neither recruitment probability nor age of first breeding of daughters was related to the mother's latent reproductive rate, but there was evidence of a weak positive relationship between the latent reproductive rates of mothers and daughters, suggesting some degree of heritability in this trait. Females with a high latent reproductive rate were expected to produce 2·0 times as many recruited females and 2·1 times as many grandchildren as females with a low reproductive rate. There was substantial stochastic variation in the number of offspring and grandchildren produced, but the inter-individual variability in female latent reproductive rate may have important fitness consequences.


Assuntos
Evolução Biológica , Aptidão Genética , Reprodução/fisiologia , Focas Verdadeiras/fisiologia , Fatores Etários , Animais , Feminino , Dinâmica Populacional , Reprodução/genética , Focas Verdadeiras/genética
20.
Environ Sci Technol ; 48(21): 12952-61, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25286162

RESUMO

Causal evidence linking toxic injury to polychlorinated biphenyl (PCB) exposure is typically confounded by the complexity of real-world contaminant mixtures to which aquatic wildlife are exposed. A local PCB "hotspot" on the Labrador coast provided a rare opportunity to evaluate the effects of PCBs on the health of a marine mammal as this chemical dominated their persistent organic pollutant (POP) burdens. The release of approximately 260 kg of PCBs by a military radar facility over a 30 year period (1970-2000) contaminated some local marine biota, including the ringed seal (Pusa hispida). The abundance profiles of eight health-related gene transcripts were evaluated in liver samples collected from 43 ringed seals in the affected area. The mRNA transcript levels of five gene targets, including aryl hydrocarbon receptor (Ahr), interleukin-1 ß (Il1b), estrogen receptor α (Esr1), insulin like growth factor receptor 1 (Igf1), and glucocorticoid receptor α (Nr3c1) correlated with increasing levels of blubber PCBs. PCB threshold values calculated using best-fit hockey-stick regression models for these five genes averaged 1,680±206 ng/g lw, with the lowest, most conservative, being 1,370 ng/g lw for Il1b. Approximately 14% of the seals in the region exceeded this threshold. The dominance of PCBs in the seals studied enabled an assessment of the effects of this chemical on gene transcripts involved in regulating the health of a highly mobile predator, something that is rarely possible in the world of complex mixtures.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Focas Verdadeiras/genética , Poluentes Químicos da Água/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Feminino , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Terra Nova e Labrador , Focas Verdadeiras/metabolismo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA