Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(10): 1359-1368, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38685871

RESUMO

Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or ß-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and ß-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and ß-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.


Assuntos
Heptoses , Fosfatos Açúcares , Fosfatos Açúcares/metabolismo , Fosfatos Açúcares/química , Heptoses/química , Heptoses/metabolismo , Estereoisomerismo , Especificidade por Substrato , Streptomyces/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
2.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998973

RESUMO

Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.


Assuntos
Ácidos Nucleicos , Fosfatos Açúcares , Ácidos Nucleicos/química , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo , Oligonucleotídeos/química , Conformação de Ácido Nucleico
3.
J Org Chem ; 88(22): 15832-15843, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917513

RESUMO

Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.


Assuntos
Fosfatos , Fosfatos Açúcares , Carboidratos , Eritritol , Fosfatos Açúcares/química
4.
J Biol Chem ; 297(4): 101113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437902

RESUMO

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Catálise , Hexosaminas/genética , Hexosaminas/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Staphylococcus aureus/genética , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(11): 2818-2823, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483275

RESUMO

Seven-carbon-chain-containing sugars exist in several groups of important bacterial natural products. Septacidin represents a group of l-heptopyranoses containing nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. Hygromycin B, an aminoglycoside anthelmintic agent used in swine and poultry farming, represents a group of d-heptopyranoses-containing antibiotics. To date, very little is known about the biosynthesis of these compounds. Here we sequenced the genome of the septacidin producer and identified the septacidin gene cluster by heterologous expression. After determining the boundaries of the septacidin gene cluster, we studied septacidin biosynthesis by in vivo and in vitro experiments and discovered that SepB, SepL, and SepC can convert d-sedoheptulose-7-phosphate (S-7-P) to ADP-l-glycero-ß-d-manno-heptose, exemplifying the involvement of ADP-sugar in microbial natural product biosynthesis. Interestingly, septacidin, a secondary metabolite from a gram-positive bacterium, shares the same ADP-heptose biosynthesis pathway with the gram-negative bacterium LPS. In addition, two acyltransferase-encoding genes sepD and sepH, were proposed to be involved in septacidin side-chain formation according to the intermediates accumulated in their mutants. In hygromycin B biosynthesis, an isomerase HygP can recognize S-7-P and convert it to ADP-d-glycero-ß-d-altro-heptose together with GmhA and HldE, two enzymes from the Escherichia coli LPS heptose biosynthetic pathway, suggesting that the d-heptopyranose moiety of hygromycin B is also derived from S-7-P. Unlike the other S-7-P isomerases, HygP catalyzes consecutive isomerizations and controls the stereochemistry of both C2 and C3 positions.


Assuntos
Escherichia coli/metabolismo , Higromicina B/biossíntese , Fosfatos Açúcares/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heptoses/metabolismo , Higromicina B/química , Nucleosídeos de Purina/biossíntese , Nucleosídeos de Purina/química , Fosfatos Açúcares/química
6.
Biochemistry ; 59(35): 3247-3257, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786412

RESUMO

Trehalose-6-phosphate phosphatase (T6PP) catalyzes the dephosphorylation of trehalose 6-phosphate (T6P) to the disaccharide trehalose. The enzyme is not present in mammals but is essential to the viability of multiple lower organisms as trehalose is a critical metabolite, and T6P accumulation is toxic. Hence, T6PP is a target for therapeutics of human pathologies caused by bacteria, fungi, and parasitic nematodes. Here, we report the X-ray crystal structures of Salmonella typhimurium T6PP (StT6PP) in its apo form and in complex with the cofactor Mg2+ and the substrate analogue trehalose 6-sulfate (T6S), the product trehalose, or the competitive inhibitor 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (OGS). OGS replaces the substrate phosphoryl group with a sulfate group and the glucosyl ring distal to the sulfate group with an octylphenyl moiety. The structures of these substrate-analogue and product complexes with T6PP show that specificity is conferred via hydrogen bonds to the glucosyl group proximal to the phosphoryl moiety through Glu123, Lys125, and Glu167, conserved in T6PPs from multiple species. The structure of the first-generation inhibitor OGS shows that it retains the substrate-binding interactions observed for the sulfate group and the proximal glucosyl ring. The OGS octylphenyl moiety binds in a unique manner, indicating that this subsite can tolerate various chemotypes. Together, these findings show that these conserved interactions at the proximal glucosyl ring binding site could provide the basis for the development of broad-spectrum therapeutics, whereas variable interactions at the divergent distal subsite could present an opportunity for the design of potent organism-specific therapeutics.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Salmonella typhimurium/enzimologia , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Especificidade por Substrato , Fosfatos Açúcares/química , Trealose/química , Trealose/metabolismo
7.
J Cell Biochem ; 121(2): 1114-1125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31478225

RESUMO

Infectious diseases are serious public health problems, affecting a large portion of the world's population. A molecule that plays a key role in pathogenic organisms is trehalose and recently has been an interest in the metabolism of this molecule for drug development. The trehalose-6-phosphate synthase (TPS1) is an enzyme responsible for the biosynthesis of trehalose-6-phosphate (T6P) in the TPS1/TPS2 pathway, which results in the formation of trehalose. Studies carried out by our group demonstrated the inhibitory capacity of T6P in the TPS1 enzyme from Saccharomyces cerevisiae, preventing the synthesis of trehalose. By in silico techniques, we compiled sequences and experimentally determined structures of TPS1. Sequence alignments and molecular modeling were performed. The generated structures were submitted in validation of algorithms, aligned structurally and analyzed evolutionarily. Molecular docking methodology was applied to analyze the interaction between T6P and TPS1 and ADMET properties of T6P were analyzed. The results demonstrated the models created presented sequence and structural similarities with experimentally determined structures. With the molecular docking, a cavity in the protein surface was identified and the molecule T6P was interacting with the residues TYR-40, ALA-41, MET-42, and PHE-372, indicating the possible uncompetitive inhibition mechanism provided by this ligand, which can be useful in directing the molecular design of inhibitors. In ADMET analyses, T6P had acceptable risk values compared with other compounds from World Drug Index. Therefore, these results may present a promising strategy to explore to develop a broad-spectrum antibiotic of this specific target with selectivity, potency, and reduced side effects, leading to a new way to treat infectious diseases like tuberculosis and candidiasis.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Simulação por Computador , Inibidores Enzimáticos/química , Glucosiltransferases/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Fosfatos Açúcares/química , Trealose/química , Trealose/metabolismo
8.
Biochem Soc Trans ; 48(5): 2127-2137, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33005918

RESUMO

The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.


Assuntos
Ácido Abscísico/metabolismo , Produtos Agrícolas/genética , Fosfatos Açúcares/química , Trealose/análogos & derivados , Processamento Alternativo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cromatina/metabolismo , Genoma de Planta , Homeostase , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Spliceossomos/metabolismo , Estresse Fisiológico , Trealose/química
9.
Proc Natl Acad Sci U S A ; 114(47): 12396-12400, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29078402

RESUMO

Phosphorylation is an essential chemical reaction for life. This reaction generates fundamental cell components, including building blocks for RNA and DNA, phospholipids for cell walls, and adenosine triphosphate (ATP) for energy storage. However, phosphorylation reactions are thermodynamically unfavorable in solution. Consequently, a long-standing question in prebiotic chemistry is how abiotic phosphorylation occurs in biological compounds. We find that the phosphorylation of various sugars to form sugar-1-phosphates can proceed spontaneously in aqueous microdroplets containing a simple mixture of sugars and phosphoric acid. The yield for d-ribose-1-phosphate reached over 6% at room temperature, giving a ΔG value of -1.1 kcal/mol, much lower than the +5.4 kcal/mol for the reaction in bulk solution. The temperature dependence of the product yield for the phosphorylation in microdroplets revealed a negative enthalpy change (ΔH = -0.9 kcal/mol) and a negligible change of entropy (ΔS = 0.0007 kcal/mol·K). Thus, the spontaneous phosphorylation reaction in microdroplets occurred by overcoming the entropic hurdle of the reaction encountered in bulk solution. Moreover, uridine, a pyrimidine ribonucleoside, is generated in aqueous microdroplets containing d-ribose, phosphoric acid, and uracil, which suggests the possibility that microdroplets could serve as a prebiotic synthetic pathway for ribonucleosides.


Assuntos
Entropia , Fosfatos Açúcares/química , Uridina/química , Água/química , Cinética , Fosforilação
10.
Proc Natl Acad Sci U S A ; 114(28): 7403-7407, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652321

RESUMO

The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.


Assuntos
Frutosedifosfatos/metabolismo , Gluconeogênese , Gelo , Aminoácidos/química , Frutose-Bifosfato Aldolase/química , Glucose/química , Glicólise , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Via de Pentose Fosfato , Fosforilação , Fosfatos Açúcares/química , Temperatura , Fatores de Tempo
11.
J Org Chem ; 84(15): 9627-9636, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264865

RESUMO

α-Phosphomannomutase/phosphoglucomutase (αPMM/PGM) from P. aeruginosa is involved in bacterial cell wall assembly and is implicated in P. aeruginosa virulence, yet few studies have addressed αPMM/PGM inhibition from this important Gram-negative bacterial human pathogen. Four structurally different α-d-glucopyranose 1-phosphate (αG1P) derivatives including 1-C-fluoromethylated analogues (1-3), 1,2-cyclic phosph(on)ate analogues (4-6), isosteric methylene phosphono analogues (7 and 8), and 6-fluoro-αG1P (9), were synthesized and assessed as potential time-dependent or reversible αPMM/PGM inhibitors. The resulting kinetic data were consistent with the crystallographic structures of the highly homologous Xanthomonas citri αPGM with inhibitors 3 and 7-9 binding to the enzyme active site (1.65-1.9 Å). These structural and kinetic insights will enhance the design of future αPMM/PGM inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfoglucomutase/antagonistas & inibidores , Fosfotransferases (Fosfomutases)/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Fosfatos Açúcares/síntese química , Fosfatos Açúcares/química
12.
Proc Natl Acad Sci U S A ; 113(26): 7148-53, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307435

RESUMO

Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.


Assuntos
Candida albicans/enzimologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/química , Monoéster Fosfórico Hidrolases/química , Biocatálise , Candida albicans/química , Candida albicans/genética , Candida albicans/metabolismo , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/química , Trealose/metabolismo
13.
J Am Chem Soc ; 140(37): 11855-11862, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30133268

RESUMO

The rhizobacterium Serratia plymuthica 4Rx13 releases a unique polymethylated hydrocarbon (C16H26) with a bicyclo[3.2.1]octadiene skeleton called sodorifen. Sodorifen production depends on a gene cluster carrying a C-methyltransferase and a terpene cyclase along with two enzymes of the 2- C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis. Comparative analysis of wild-type and mutant volatile organic compound profiles revealed a C-methyltransferase-dependent C16 alcohol called pre-sodorifen, the production of which is upregulated in the terpene cyclase mutant. The monocyclic structure of this putative intermediate in sodorifen biosynthesis was identified by NMR spectroscopy. In vitro assays with the heterologously expressed S. plymuthica C-methyltransferase and terpene cyclase demonstrated that these enzymes act sequentially to convert farnesyl pyrophosphate (FPP) into sodorifen via a pre-sodorifen pyrophosphate intermediate, indicating that the S-adenosyl methionine (SAM)-dependent C-methyltransferase from S. plymuthica exhibits unprecedented cyclase activity. In vivo incorporation experiments with 13C-labeled succinate, l-alanine, and l-methionine confirmed a MEP pathway to FPP via the canonical glyceraldehyde-3-phosphate and pyruvate, as well as its SAM-dependent methylation in pre-sodorifen and sodorifen biosynthesis. 13C{1H} NMR spectroscopy facilitated the localization of 13C labels and provided detailed insights into the biosynthetic pathway from FPP via pre-sodorifen pyrophosphate to sodorifen.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Eritritol/análogos & derivados , Metiltransferases/metabolismo , Octanos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , S-Adenosilmetionina/metabolismo , Serratia/metabolismo , Sesquiterpenos/metabolismo , Fosfatos Açúcares/metabolismo , Compostos Bicíclicos com Pontes/química , Ciclização , Eritritol/química , Eritritol/metabolismo , Metilação , Estrutura Molecular , Octanos/química , Fosfatos de Poli-Isoprenil/química , S-Adenosilmetionina/química , Serratia/enzimologia , Sesquiterpenos/química , Fosfatos Açúcares/química
14.
Biosci Biotechnol Biochem ; 82(7): 1252-1259, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29558858

RESUMO

Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.


Assuntos
Corynebacterium glutamicum/metabolismo , Cicloexilaminas/síntese química , Glicina/análogos & derivados , Engenharia Metabólica , Protetores Solares/síntese química , Actinobacteria/genética , Corynebacterium glutamicum/genética , Genes Bacterianos , Glicina/síntese química , Espectrometria de Massas , Via de Pentose Fosfato , Fosfogluconato Desidrogenase/metabolismo , Recombinação Genética , Fosfatos Açúcares/química , Transaldolase/genética , Raios Ultravioleta
15.
Biochemistry ; 56(4): 592-601, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28045507

RESUMO

3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP in the first step of the shikimate biosynthetic pathway. DAHP oxime, in which an oxime replaces the ketone, is a potent inhibitor, with Ki = 1.5 µM. Linear free energy relationship (LFER) analysis of DAHP oxime inhibition using DAHP synthase mutants revealed an excellent correlation between transition state stabilization and inhibition. The equations of LFER analysis were rederived to formalize the possibility of proportional, rather than equal, changes in the free energies of transition state stabilization and inhibitor binding, in accord with the fact that the majority of LFER analyses in the literature demonstrate nonunity slopes. A slope of unity, m = 1, indicates that catalysis and inhibitor binding are equally sensitive to perturbations such as mutations or modified inhibitor/substrate structures. Slopes <1 or >1 indicate that inhibitor binding is less sensitive or more sensitive, respectively, to perturbations than is catalysis. LFER analysis using the tetramolecular specificity constant, that is, plotting log(KM,MnKM,PEPKM,E4P/kcat) versus log(Ki), revealed a slope, m, of 0.34, with r2 = 0.93. This provides evidence that DAHP oxime is mimicking the first irreversible transition state of the DAHP synthase reaction, presumably phosphate departure from the tetrahedral intermediate. This is evidence that the oxime group can act as a functional, as well as structural, mimic of phosphate groups.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Oximas/química , Proteínas Recombinantes de Fusão/química , Fosfatos Açúcares/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mimetismo Molecular , Mutação , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Fosfatos Açúcares/metabolismo , Termodinâmica
16.
Plant J ; 82(1): 122-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704332

RESUMO

2-C-Methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) is an intermediate of the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co-factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds-3 mutant, defective in the 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2-C-methyl-D-erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds-3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds-3 mutant also showed enhanced resistance to the phloem-feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP-mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds-3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.


Assuntos
Arabidopsis/fisiologia , Eritritol/análogos & derivados , Hemiterpenos/metabolismo , Fosfatos Açúcares/metabolismo , Animais , Afídeos/fisiologia , Arabidopsis/química , Arabidopsis/genética , Eritritol/química , Eritritol/isolamento & purificação , Eritritol/metabolismo , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/metabolismo , Hemiterpenos/química , Hemiterpenos/isolamento & purificação , Mutação , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plântula/química , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Fosfatos Açúcares/química , Fosfatos Açúcares/isolamento & purificação
17.
J Comput Chem ; 37(32): 2770-2782, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27699809

RESUMO

Zn-metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long-duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor-protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5-phospho-d-arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum-chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI-ligand energy-minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy-minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy-minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand-macromolecule recognition problems. © 2016 Wiley Periodicals, Inc.


Assuntos
Ácidos Hidroxâmicos/química , Metaloproteínas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Fosfatos Açúcares/química , Zinco/química , Sítios de Ligação , Ligantes , Metaloproteínas/metabolismo , Zinco/metabolismo
18.
Anal Bioanal Chem ; 408(20): 5651-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27271261

RESUMO

The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.


Assuntos
Músculo Esquelético/química , Neoplasias Experimentais/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Fosfatos Açúcares/análise , Fosfatos Açúcares/química , Animais , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos
19.
Angew Chem Int Ed Engl ; 54(52): 15867-71, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26565075

RESUMO

Sugar phosphates play an important role in metabolism and signaling, but also as constituents of macromolecular structures. Selective phosphorylation of sugars is chemically difficult, particularly at the anomeric center. We report phosphatase-catalyzed diastereoselective "anomeric" phosphorylation of various aldose substrates with α-D-glucose 1-phosphate, derived from phosphorylase-catalyzed conversion of sucrose and inorganic phosphate, as the phosphoryl donor. Simultaneous and sequential two-step transformations by the phosphorylase-phosphatase combination catalyst yielded glycosyl phosphates of defined anomeric configuration in yields of up to 70 % based on the phosphate applied to the reaction. An efficient enzyme-assisted purification of the glycosyl phosphate products from reaction mixtures was established.


Assuntos
Monoéster Fosfórico Hidrolases/química , Fosforilases/química , Fosfatos Açúcares/química , Catálise , Estereoisomerismo
20.
Biochemistry ; 53(26): 4250-60, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24832673

RESUMO

Sedoheptulose 7-phosphate cyclases (SH7PCs) encompass three enzymes involved in producing the core cyclitol structures of pseudoglycosides and similar bioactive natural products. One such enzyme is ValA from Streptomyces hygroscopicus subsp. jinggangensis 5008, which makes 2-epi-5-epi-valiolone as part of the biosynthesis of the agricultural antifungal agent validamycin A. We present, as the first SH7PC structure, the 2.1 Å resolution crystal structure of ValA in complex with NAD+ and Zn2+ cofactors. ValA has a fold and active site organization resembling those of the sugar phosphate cyclase dehydroquinate synthase (DHQS) and contains two notable, previously unrecognized interactions between NAD+ and Asp side chains conserved in all sugar phosphate cyclases that may influence catalysis. Because the domains of ValA adopt a nearly closed conformation even though no sugar substrate is present, comparisons with a ligand-bound DHQS provide a model for aspects of substrate binding. One striking active site difference is a loop that adopts a distinct conformation as a result of an Asp→Asn change with respect to DHQS and alters the identity and orientation of a key Arg residue. This and other active site differences in ValA are mostly localized to areas where the ValA substrate differs from that of DHQS. Sequence comparisons with a second SH7PC making a product with distinct stereochemistry lead us to postulate that the product stereochemistry of a given SH7PC is not the result of events taking place during catalysis but is accomplished by selective binding of either the α or ß pyranose anomer of the substrate.


Assuntos
Proteínas de Bactérias/química , Liases Intramoleculares/química , Streptomyces/enzimologia , Fosfatos Açúcares/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Inositol/análogos & derivados , Inositol/biossíntese , Liases Intramoleculares/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fosfatos Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA