Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199006

RESUMO

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Assuntos
Ataxia de Friedreich , Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Microscopia Crioeletrônica , Frataxina , Biossíntese de Proteínas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
2.
J Mol Cell Cardiol ; 192: 36-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734062

RESUMO

AIMS: Ferroptosis is a form of iron-regulated cell death implicated in ischemic heart disease. Our previous study revealed that Sirtuin 3 (SIRT3) is associated with ferroptosis and cardiac fibrosis. In this study, we tested whether the knockout of SIRT3 in cardiomyocytes (SIRT3cKO) promotes mitochondrial ferroptosis and whether the blockade of ferroptosis would ameliorate mitochondrial dysfunction. METHODS AND RESULTS: Mitochondrial and cytosolic fractions were isolated from the ventricles of mice. Cytosolic and mitochondrial ferroptosis were analyzed by comparison to SIRT3loxp mice. An echocardiography study showed that SIRT3cKO mice developed heart failure as evidenced by a reduction of EF% and FS% compared to SIRT3loxp mice. Comparison of mitochondrial and cytosolic fractions of SIRT3cKO and SIRT3loxp mice revealed that, upon loss of SIRT3, mitochondrial, but not cytosolic, total lysine acetylation was significantly increased. Similarly, acetylated p53 was significantly upregulated only in the mitochondria. These data demonstrate that SIRT3 is the primary mitochondrial deacetylase. Most importantly, loss of SIRT3 resulted in significant reductions of frataxin, aconitase, and glutathione peroxidase 4 (GPX4) in the mitochondria. This was accompanied by a significant increase in levels of mitochondrial 4-hydroxynonenal. Treatment of SIRT3cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) for 14 days significantly improved preexisting heart failure. Mechanistically, Fer-1 treatment significantly increased GPX4 and aconitase expression/activity, increased mitochondrial iron­sulfur clusters, and improved mitochondrial membrane potential and Complex IV activity. CONCLUSIONS: Inhibition of ferroptosis ameliorated cardiac dysfunction by specifically targeting mitochondrial aconitase and iron­sulfur clusters. Blockade of mitochondrial ferroptosis may be a novel therapeutic target for mitochondrial cardiomyopathies.


Assuntos
Aconitato Hidratase , Ferroptose , Camundongos Knockout , Miócitos Cardíacos , Fenilenodiaminas , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Aconitato Hidratase/metabolismo , Ferroptose/efeitos dos fármacos , Camundongos , Acetilação , Fenilenodiaminas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Ferro/metabolismo , Frataxina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Citosol/metabolismo , Cicloexilaminas
3.
J Cell Mol Med ; 28(7): e18166, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506080

RESUMO

Although MRPS16 is involved in cancer development, its mechanisms in developing LAUD remain unclear. Herein, qRT-PCR, WB and IHC were utilized for evaluating MRPS16 expression levels, while functional assays besides animal experiments were performed to measure MRPS16 effect on LAUD progression. Using WB, the MRPS16 effect on PI3K/AKT/Frataxin signalling pathway was tested. According to our study, MRPS16 was upregulated in LAUD and was correlated to the advanced TNM stage as well as poor clinical outcomes, which represent an independent prognostic factor. Based on functional assays, MRPS16 is involved in promoting LAUD growth, migration and invasion, which was validated further in subsequent analyses through PI3K/AKT/Frataxin pathway activation. Moreover, MRPS16-knockdown-mediated Frataxin overexpression was shown to restore the reduction in tumour cells proliferation, migration and invasion. Our results revealed that MRPS16 caused an aggressive phenotype to LAUD and was a poor prognosticator; thus, targeting MRPS16 may be effectual in LAUD treatment.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Frataxina , Linhagem Celular Tumoral , Proliferação de Células/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Movimento Celular/genética
4.
Mov Disord ; 39(7): 1099-1108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696306

RESUMO

BACKGROUND: Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES: Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS: 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS: Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/µg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/µg), relative controls (10.1 pg/µg), and FRDA patients (5.7 pg/µg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS: Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Calcitriol , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Humanos , Ataxia de Friedreich/tratamento farmacológico , Masculino , Feminino , Calcitriol/farmacologia , Calcitriol/administração & dosagem , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Qualidade de Vida , Adolescente , Resultado do Tratamento
5.
PLoS Comput Biol ; 19(12): e1011701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113197

RESUMO

Iron is an essential transition metal for all eukaryotic cells, and its trafficking throughout the cell is highly regulated. However, the overall cellular mechanism of regulation is poorly understood despite knowing many of the molecular players involved. Here, an ordinary-differential-equations (ODE) based kinetic model of iron trafficking within a growing yeast cell was developed that included autoregulation. The 9-reaction 8-component in-silico cell model was solved under both steady-state and time-dependent dynamical conditions. The ODE for each component included a dilution term due to cell growth. Conserved rate relationships were obtained from the null space of the stoichiometric matrix, and the reduced-row-echelon-form was used to distinguish independent from dependent rates. Independent rates were determined from experimentally estimated component concentrations, cell growth rates, and the literature. Simple rate-law expressions were assumed, allowing rate-constants for each reaction to be estimated. Continuous Heaviside logistical functions were used to regulate rate-constants. These functions acted like valves, opening or closing depending on component "sensor" concentrations. Two cellular regulatory mechanisms were selected from 134,217,728 possibilities using a novel approach involving 6 mathematically-defined filters. Three cellular states were analyzed including healthy wild-type cells, iron-deficient wild-type cells, and a frataxin-deficient strain of cells characterizing the disease Friedreich's Ataxia. The model was stable toward limited perturbations, as determined by the eigenvalues of Jacobian matrices. Autoregulation allowed healthy cells to transition to the diseased state when triggered by a mutation in frataxin, and to the iron-deficient state when cells are placed in iron-deficient growth medium. The in-silico phenotypes observed during these transitions were similar to those observed experimentally. The model also predicted the observed effects of hypoxia on the diseased condition. A similar approach could be used to solve ODE-based kinetic models associated with other biochemical processes operating within growing cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ferro/metabolismo , Frataxina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase
6.
Cell Mol Life Sci ; 81(1): 12, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129330

RESUMO

Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.


Assuntos
Ataxia de Friedreich , Sirtuína 3 , Sirtuínas , Camundongos , Animais , Sirtuína 3/metabolismo , Gânglios Espinais/metabolismo , Sirtuínas/metabolismo , Acetilação , Proteínas de Ligação ao Ferro/genética , Frataxina , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Ferro/metabolismo
7.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891993

RESUMO

Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.


Assuntos
Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Simulação de Dinâmica Molecular , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Mutação de Sentido Incorreto , Simulação por Computador , Variação Genética
8.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
9.
J Mol Biol ; 436(10): 168555, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552947

RESUMO

The funneled energy landscape theory suggests that the folding pathway of homologous proteins should converge at the late stages of folding. In this respect, proteins displaying a broad energy landscape for folding are particularly instructive, allowing inferring both the early, intermediate and late stages of folding. In this paper we explore the folding mechanisms of human frataxin, an essential mitochondrial protein linked to the neurodegenerative disorder Friedreich's ataxia. Building upon previous studies on the yeast homologue, the folding pathway of human frataxin is thoroughly examined, revealing a mechanism implying the presence of a broad energy barrier, reminiscent of the yeast counterpart. Through an extensive site-directed mutagenesis, we employed a Φ -value analysis to map native-like contacts in the folding transition state. The presence of a broad energy barrier facilitated the exploration of such contacts in both early and late folding events. We compared results from yeast and human frataxin providing insights into the impact of native topology on the folding mechanism and elucidating the properties of the underlying free energy landscape. The findings are discussed in the context of the funneled energy landscape theory of protein folding.


Assuntos
Frataxina , Dobramento de Proteína , Humanos , Frataxina/química , Frataxina/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica
10.
Acta Histochem ; 126(1): 152135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266318

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease. However, the pathogenesis remains unclear. Recently, an increasing number of studies have demonstrated that ferroptosis is a new type of iron-dependent programmed cell death, contributes to the death of nerve cells in AD. By controlling iron homeostasis and mitochondrial function, the particular protein called frataxin (FXN), which is situated in the mitochondrial matrix, is a critical regulator of ferroptosis disease. It is encoded by the nuclear gene FXN. Here, we identified a novel underlying mechanism through which ferroptosis mediated by FXN contributes to AD. METHODS: Human neuroblastoma cells (SH-SY5Y) were injured by L-glutamate (L-Glu). Overexpression of FXN by lentiviral transfection. In each experimental group, we assessed the ultrastructure of the mitochondria, the presence of iron and intracellular Fe2 + , the levels of reactive oxygen species, the mitochondrial membrane potential (MMP), and lipid peroxidation. Quantification was done for malondialdehyde (MDA) and reduced glutathione (GSH), as well as reactive oxygen species (ROS). Western blot and cellular immunofluorescence assays were used to detect the expression of xCT and GPX4 proteins which in System Xc-/GPX4 pathway, and the protein expressions of ACSL4 and TfR1 were investigated by Western blot. RESULTS: The present work showed: (1) The expression of FXN was reduced in the L-Glu group; (2) Compared with the Control group, MMP was reduced in the L-Glu group, and mitochondria were observed to shrink and cristae were deformed, reduced or disappeared by transmission electron microscopy, and after FXN overexpression and ferrostatin-1 (Fer-1) (10 µmol/L) intervened, MMP was increased and mitochondrial morphology was significantly improved, suggesting that mitochondrial function was impaired in the L-Glu group, and overexpression of FXN could improve the manifestation of mitochondrial function impairment. (3) In the L-Glu group, ROS, MDA, iron ion concentration and Fe2+ levels were increased, GSH was decreased. Elevated expression of ACSL4 and TfR1, important regulatory proteins of ferroptosis, was detected by Western blot, and the expression of xCT and GPX4 in the System Xc-/GPX4 pathway was reduced by Western blot and cellular immunofluorescence. However, the above results were reversed when FXN overexpression and Fer-1 intervened. CONCLUSION: To conclude, our research demonstrates that an elevated expression of FXN effectively demonstrates a robust neuroprotective effect against oxidative damage induced by L-Glu. Moreover, it mitigates mitochondrial dysfunction and lipid metabolic dysregulation associated with ferroptosis. FXN overexpression holds promise in potential therapeutic strategies for AD by inhibiting ferroptosis in nerve cells and fostering their protection.


Assuntos
Ferroptose , Frataxina , Doenças Neurodegenerativas , Humanos , Cicloexilaminas , Frataxina/metabolismo , Ácido Glutâmico , Ferro , Doenças Neurodegenerativas/metabolismo , Fenilenodiaminas , Espécies Reativas de Oxigênio
11.
J Am Heart Assoc ; 13(15): e034316, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39023059

RESUMO

BACKGROUND: The metabolic flexibility of endothelial cells is linked to their phenotypic plasticity. Frataxin is critical in determining the iron metabolism and fate of endothelial cells. This study aimed to investigate frataxin-mediated metabolic remodeling during the endothelial-to-mesenchymal transition (EndoMT). METHODS AND RESULTS: Endothelial cell-specific frataxin knockout and frataxin mutation mice were subjected to angiotensin II to induce hypertension. EndoMT and cardiac fibrosis were assessed using histological and protein expression analyses. Fatty acid oxidation (FAO) in microvascular endothelial cells was measured using a Seahorse XF96 analyzer. We showed that inhibition of FAO accompanies angiotensin II-induced EndoMT. Frataxin knockout mice promote EndoMT, associated with increased cardiac fibrosis following angiotensin II infusion. Angiotensin II reduces frataxin expression, which leads to mitochondrial iron overload and subsequent carbonylation of sirtuin 3. In turn, carbonylated sirtuin 3 contributes to the acetylated frataxin at lysine 189, making it more prone to degradation. The frataxin/sirtuin 3 feedback loop reduces hydroxyl-CoA dehydrogenase α subunit-mediated FAO. Additionally, silymarin is a scavenger of free radicals, restoring angiotensin II-induced reduction of FAO activity and sirtuin 3 and frataxin expression, improving EndoMT both in vitro and in vivo. Furthermore, frataxin mutation mice showed suppressed EndoMT and improved cardiac fibrosis. CONCLUSIONS: The frataxin/sirtuin 3 feedback loop has the potential to attenuate angiotensin II-induced EndoMT by improving FAO.


Assuntos
Angiotensina II , Transição Endotélio-Mesênquima , Frataxina , Humanos , Animais , Células HEK293 , Camundongos Endogâmicos C57BL , Frataxina/genética , Frataxina/metabolismo , Angiotensina II/farmacologia , Transição Endotélio-Mesênquima/efeitos dos fármacos , Transição Endotélio-Mesênquima/genética , Mutação , Sirtuína 3/metabolismo , Silimarina/farmacologia , Acetilação , Camundongos Knockout , Regulação da Expressão Gênica/efeitos dos fármacos
12.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631900

RESUMO

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Assuntos
Frataxina , Ataxia de Friedreich , Succinatos , Animais , Camundongos , Butiratos , Frataxina/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Glucose , Microglia/metabolismo
13.
Cells ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38920668

RESUMO

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Assuntos
Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Animais , Humanos , Ataxia de Friedreich/genética , Regulação da Expressão Gênica , Proteínas de Ligação ao Ferro/genética
14.
Ann Clin Transl Neurol ; 11(3): 540-553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311797

RESUMO

OBJECTIVE: Current treatments for Friedreich's ataxia, a neurodegenerative disorder characterized by decreased intramitochondrial frataxin, do not address low frataxin concentrations. Nomlabofusp (previously CTI-1601) is a frataxin replacement therapy with a unique mechanism of action that directly addresses this underlying frataxin deficiency. Phase 1 studies assessed the safety, pharmacokinetic, and pharmacodynamic profiles of subcutaneously administered nomlabofusp in adults with Friedreich's ataxia. METHODS: Patients were enrolled in two Phase 1, double-blind, placebo-controlled studies. The single ascending-dose (SAD) study (NCT04176991) evaluated single doses of nomlabofusp (25, 50, 75, or 100 mg) or placebo. The multiple ascending-dose (MAD) study (NCT04519567) evaluated nomlabofusp (25 mg daily for 4 days then every third day, 50 mg daily for 7 days then every 2 days, or 100 mg daily) or placebo for 13 days. RESULTS: Patients aged 19-69 years were enrolled (SAD, N = 28; MAD, N = 27). Nomlabofusp was generally well tolerated through 13 days. Most adverse events were mild and resolved quickly. No serious adverse events or deaths were reported. Peak nomlabofusp plasma concentrations occurred 15 min after subcutaneous administration. Nomlabofusp plasma exposures increased with increasing doses and daily administration and decreased with reduced dosing frequency. Increased frataxin concentrations were observed in buccal cells, skin, and platelets with higher and more frequent nomlabofusp administration. INTERPRETATION: Results from this study support a favorable safety profile for nomlabofusp. Subcutaneous nomlabofusp injections were quickly absorbed; higher doses and daily administration resulted in increased tissue frataxin concentrations. Future studies will evaluate longer-term safety and possible efficacy of nomlabofusp.


Assuntos
Ataxia de Friedreich , Adulto , Humanos , Frataxina , Ataxia de Friedreich/tratamento farmacológico , Mucosa Bucal , Adulto Jovem , Pessoa de Meia-Idade , Idoso
15.
Curr Pharm Des ; 30(19): 1472-1489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638052

RESUMO

BACKGROUND: Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Frataxina , Animais
16.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627381

RESUMO

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Assuntos
Frataxina , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo
17.
Stem Cell Res ; 74: 103289, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141359

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerativedisorder caused by over expansion of GAA repeats in thefirstintron ofFXN gene. Here, we generated two iPSC lines from FRDA patients with biallelic expansion of GAA repeats in the first intron ofFXNgene.IGIBi014-A and IGIBi015-Aboth iPSC lines demonstrated characteristics of pluripotency, normal karyotypes (46, XY),the capacity to differentiate into all three germ layers, and the ability to sustain the GAA repeat expansion with decreased FXN mRNA expression. These cell lines will be utilized to comprehend the pathophysiology of the illness and the FRDA's predictive phenotypes.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Humanos , Ataxia de Friedreich/metabolismo , Íntrons/genética , Frataxina , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Expansão das Repetições de Trinucleotídeos/genética
18.
Ann Clin Transl Neurol ; 11(5): 1110-1121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396238

RESUMO

OBJECTIVE: Most individuals with Friedreich ataxia (FRDA) have homozygous GAA triplet repeat expansions in the FXN gene, correlating with a typical phenotype of ataxia and cardiomyopathy. A minority are compound heterozygotes carrying a GAA expansion on one allele and a mutation on the other. The study aim was to examine phenotypic variation among compound heterozygotes. METHODS: Data on FXN mutations were obtained from the Friedreich Ataxia Clinical Outcome Measures Study (FA-COMS). We compared clinical features in a single-site FA-COMS cohort of 51 compound heterozygous and 358 homozygous patients, including quantitative measures of cardiac, neurologic, and visual disease progression. RESULTS: Non-GAA repeat mutations were associated with reduced cardiac disease, and patients with minimal/no function mutations otherwise had a typical FRDA phenotype but with significantly more severe progression. The partial function mutation group was characterized by relative sparing of bulbar and upper limb function, as well as particularly low cardiac involvement. Other clinical features in this group, including optic atrophy and diabetes mellitus, varied widely depending on the specific type of partial function mutation. INTERPRETATION: These data support that the typical FRDA phenotype is driven by frataxin deficiency, especially severe in compound heterozygotes with minimal/no function mutations, whereas the heterogeneous presentations of those with partial function mutations may indicate other contributing factors to FRDA pathogenesis.


Assuntos
Frataxina , Ataxia de Friedreich , Heterozigoto , Fenótipo , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Estudos de Coortes , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Mutação , Expansão das Repetições de Trinucleotídeos/genética
19.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119809, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134123

RESUMO

Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.


Assuntos
Modelos Animais de Doenças , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Mutação
20.
Stem Cell Res ; 77: 103382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484450

RESUMO

Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A). Both iPSC lines displayed typical iPSC morphology, expression of pluripotency markers, regular karyotypes (46, XY; 46, XX), capacity to grow into three germ layers, and FRDA hallmark -GAA repeat expansion and decreased FXN mRNA. Through these iPSC lines, FRDA phenotypes may be replicated in the in vitro assays, by creating neuron subtypes, cardiomyocytes and 3D organoids, for molecular and cellular biomarkers and therapeutic applications.


Assuntos
Frataxina , Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Proteínas de Ligação ao Ferro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Ligação ao Ferro/genética , Íntrons , Expansão das Repetições de Trinucleotídeos , Masculino , Linhagem Celular , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA