Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 141(1): 108113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113551

RESUMO

Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.


Assuntos
Gangliosidoses , Glucosilceramidase , Adulto , Humanos , Glucosilceramidas , Glucosiltransferases , Hidrolases , Relação Dose-Resposta a Droga , Método Duplo-Cego , Administração Oral
2.
J Cell Mol Med ; 26(2): 527-539, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877779

RESUMO

Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1 -gangliosidosis (GM1 ). DRG of homozygous ß-galactosidase-knockout mice and homozygous C57BL/6 wild-type mice were investigated performing immunostaining on formalin-fixed, paraffin-embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin-positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3-cyclic nucleotide 3-phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue-resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1 , characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.


Assuntos
Gangliosidoses , Neuroglia , Animais , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gangliosidoses/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo
3.
Genet Med ; 24(12): 2434-2443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194207

RESUMO

PURPOSE: Gangliosidoses are a group of inherited neurogenetic autosomal recessive lysosomal storage disorders usually presenting with progressive macrocephaly, developmental delay, and regression, leading to significant morbidity and premature death. A quantitative definition of the natural history would support and enable clinical development of specific therapies. METHODS: Single disease registry of 8 gangliosidoses (NCT04624789). Cross-sectional analysis of baseline data in N = 26 patients. Primary end point: disease severity assessed by the 8-in-1 score. Secondary end points: first neurologic sign or symptom observed (1) by parents and (2) by physicians, diagnostic delay, as well as phenotypical characterization. Tertiary end points: neurologic outcomes (development, ataxia, dexterity) and disability. RESULTS: The 8-in-1 score quantitatively captured severity of disease. Parents recognized initial manifestations (startle reactions) earlier than physicians (motor developmental delay and hypotonia). Median diagnostic delay was 3.16 (interquartile range 0.69-6.25) years. In total, 8 patients presented with late-infantile phenotypes. CONCLUSION: Data in this registry raise awareness of these rare and fatal conditions to accelerate diagnosis, inform counseling of afflicted families, define quantitative end points for clinical trials, and can serve as historical controls for future therapeutic studies. We provide further insight into the rare late-infantile phenotype for GM2-gangliosidosis. Longitudinal follow up is planned.


Assuntos
Gangliosidoses GM2 , Gangliosidoses , Doença de Tay-Sachs , Humanos , Estudos Transversais , Gangliosidoses GM2/diagnóstico , Gangliosidoses GM2/terapia , Diagnóstico Tardio , Gangliosidoses/diagnóstico , Sistema de Registros , Doença de Tay-Sachs/genética
4.
Neurol Sci ; 43(4): 2849-2852, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066644

RESUMO

INTRODUCTION: Spastic paraplegia type 11 (SPG11) is the most frequent autosomal recessive HSP. Studies on SPG11 patients' fibroblasts, post-mortem brains, and mouse models revealed endolysosomal system dysfunction and lipid accumulation, especially gangliosides. We report a patient with early clinical findings mimicking a GM2-gangliosidosis. METHODS: A clinical, biochemical, and metabolic characterization was performed. Electron microscopy analysis was completed on rectal mucosa and skin biopsy specimens. A NGS panel of genes associated to neuronal ceroid lipofuscinosis and HSP was analyzed. RESULTS: The patient presented with worsening walking difficulty and psychomotor slowdown since childhood; to exclude a neurometabolic storage disease, skin and rectal biopsies were performed: enteric neurons showed lipofuscin-like intracellular inclusions, thus suggesting a possible GM2-gangliosidosis. However, further analysis did not allow to confirm such hypothesis. In adulthood we detected flaccid paraplegia, nystagmus, axonal motor neuropathy, carpus callosum atrophy, and colon atony. Surprisingly, the NGS panel detected two already reported SPG11 mutations in compound heterozygosity. CONCLUSIONS: We describe for the first time pathological hallmarks of SPG11 in enteric neuron from a rectal mucosa biopsy. The report illustrates the possible overlap between SPG11 and GM2-gangliosidosis, especially in the first disease phases and helps to improve our knowledge about SPG11 physiopathology.


Assuntos
Gangliosidoses , Paraplegia Espástica Hereditária , Adulto , Animais , Criança , Humanos , Camundongos , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética
5.
Zhonghua Yan Ke Za Zhi ; 58(10): 793-795, 2022 Oct 11.
Artigo em Zh | MEDLINE | ID: mdl-36220651

RESUMO

This article describes a case which seek medical advice for 2 months due to retrogressive development, The discovery of the characteristic fundus of the macular cherry-red spot is a key clue for further genetic analysis, GLB compound heterozygous mutations is detected, and enzymology results show that the acid B-galactose glucoside enzyme significantly decrease, fundus inspection help diagnosis GM1 gangliosidoses.


Assuntos
Gangliosidoses , Gangliosídeo G(M1) , Galactose , Gangliosidoses/diagnóstico , Gangliosidoses/genética , Glucosídeos , Humanos , Mutação
6.
Chem Rec ; 21(11): 2980-2989, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34816592

RESUMO

A short survey on selected ß-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal ß-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.


Assuntos
Gangliosidoses , Gangliosidose GM1 , Mucopolissacaridose IV , beta-Galactosidase/antagonistas & inibidores , Gangliosidose GM1/tratamento farmacológico , Humanos , Lisossomos , Mucopolissacaridose IV/tratamento farmacológico
7.
Metab Brain Dis ; 34(2): 495-503, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712135

RESUMO

Gangliosidoses (GM1 and GM2 gangliosidosis) are rare, autosomal recessive progressive neurodegenerative lysosomal storage disorders caused by defects in the degradation of glycosphingolipids. We aimed to investigate clinical, biochemical and molecular genetic spectrum of Turkish patients with infantile gangliosidoses and examined the potential role of serum aspartate transaminase levels as a biomarker. We confirmed the diagnosis of GM1 and GM2 gangliosidosis based on clinical findings with specific enzyme and/or molecular analyses. We retrospectively reviewed serum aspartate transaminase levels of patients with other biochemical parameters. Serum aspartate transaminase level was elevated in all GM1 and GM2 gangliosidosis patients in whom the test was performed, along with normal alanine transaminase. Aspartate transaminase can be a biochemical diagnostic clue for infantile gangliosidoses. It might be a simple but important biomarker for diagnosis, follow up, prognosis and monitoring of the response for the future therapies in these patients.


Assuntos
Aspartato Aminotransferases/metabolismo , Biomarcadores/análise , Gangliosidoses/tratamento farmacológico , Doença de Sandhoff/tratamento farmacológico , Aspartato Aminotransferases/efeitos dos fármacos , Feminino , Gangliosidoses GM2/tratamento farmacológico , Gangliosidose GM1/tratamento farmacológico , Humanos , Masculino , Estudos Retrospectivos
8.
Mol Genet Metab ; 121(2): 170-179, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28476546

RESUMO

BACKGROUND: Infantile gangliosidoses include GM1 gangliosidosis and GM2 gangliosidosis (Tay-Sachs disease, Sandhoff disease). To date, natural history studies in infantile GM2 (iGM2) have been retrospective and conducted through surveys. Compared to iGM2, there is even less natural history information available on infantile GM1 disease (iGM1). There are no approved treatments for infantile gangliosidoses. Substrate reduction therapy using miglustat has been tried, but is limited by gastrointestinal side effects. Development of effective treatments will require identification of meaningful outcomes in the setting of rapidly progressive and fatal diseases. OBJECTIVES: This study aimed to establish a timeline of clinical changes occurring in infantile gangliosidoses, prospectively, to: 1) characterize the natural history of these diseases; 2) improve planning of clinical care; and 3) identify meaningful future treatment outcome measures. METHODS: Patients were evaluated prospectively through ongoing clinical care. RESULTS: Twenty-three patients were evaluated: 8 infantile GM1, 9 infantile Tay-Sachs disease, 6 infantile Sandhoff disease. Common patterns of clinical change included: hypotonia before 6months of age; severe motor skill impairment within first year of life; seizures; dysphagia and feeding-tube placement before 18months of age. Neurodevelopmental testing scores reached the floor of the testing scale by 20 to 28months of age. Vertebral beaking, kyphosis, and scoliosis were unique to patients with infantile GM1. Chest physiotherapy was associated with increased survival in iGM1 (p=0.0056). Miglustat combined with a low-carbohydrate ketogenic diet (the Syner-G regimen) in patients who received a feeding-tube was associated with increased survival in infantile GM1 (p=0.025). CONCLUSIONS: This is the first prospective study of the natural history of infantile gangliosidoses and the very first natural history of infantile GM1. The homogeneity of the infantile gangliosidoses phenotype as demonstrated by the clinical events timeline in this study provides promising secondary outcome measure candidates. This study indicates that overall survival is a meaningful primary outcome measure for future clinical trials due to reliable timing and early occurrence of this event. Combination therapy approaches, instead of monotherapy approaches, will likely be the best way to optimize clinical outcomes. Combination therapy approaches include palliative therapies (e.g., chest physiotherapy) along with treatments that address the underlying disease pathology (e.g. miglustat or future gene therapies).


Assuntos
Gangliosidoses GM2/fisiopatologia , Gangliosidoses/fisiopatologia , Gangliosidoses/terapia , Gangliosidose GM1/fisiopatologia , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Dieta Cetogênica , Dissacaridases/antagonistas & inibidores , Feminino , Gangliosidoses/complicações , Gangliosidoses GM2/terapia , Gangliosidose GM1/terapia , Inibidores de Glicosídeo Hidrolases/efeitos adversos , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Lactente , Masculino , Estudos Prospectivos , Estudos Retrospectivos
9.
BMC Vet Res ; 12: 67, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036194

RESUMO

BACKGROUND: GM1 and GM2 gangliosidoses are progressive neurodegenerative lysosomal storage diseases resulting from the excessive accumulation of GM1 and GM2 gangliosides in the lysosomes, respectively. The diagnosis of gangliosidosis is carried out based on comprehensive findings using various types of specimens for histological, ultrastructural, biochemical and genetic analyses. Therefore, the partial absence or lack of specimens might have resulted in many undiagnosed cases. The aim of the present study was to establish immunohistochemical and immunofluorescent techniques for the auxiliary diagnosis of canine and feline gangliosidoses, using paraffin-embedded brain specimens stored for a long period. RESULTS: Using hematoxylin and eosin staining, cytoplasmic accumulation of pale to eosinophilic granular materials in swollen neurons was observed in animals previously diagnosed with GM1 or GM2 gangliosidosis. The immunohistochemical and immunofluorescent techniques developed in this study clearly demonstrated the accumulated material to be either GM1 or GM2 ganglioside. CONCLUSIONS: Immunohistochemical and immunofluorescent techniques using stored paraffin-embedded brain specimens are useful for the retrospective diagnosis of GM1 and GM2 gangliosidoses in dogs and cats.


Assuntos
Doenças do Gato/diagnóstico , Doenças do Cão/diagnóstico , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/metabolismo , Gangliosidoses/veterinária , Animais , Encéfalo/patologia , Gatos , Cães , Imunofluorescência/veterinária , Gangliosidoses/diagnóstico , Imuno-Histoquímica/veterinária , Inclusão em Parafina , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
Mol Genet Metab ; 114(2): 274-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557439

RESUMO

BACKGROUND: The gangliosidoses (Tay-Sachs disease, Sandhoff disease, and GM1-gangliosidosis) are progressive neurodegenerative diseases caused by lysosomal enzyme activity deficiencies and consequent accumulation of gangliosides in the central nervous system (CNS). The infantile forms are distinguished from the juvenile forms by age of onset, rate of disease progression, and age of death. There are no approved treatments for the gangliosidoses. In search of potential biomarkers of disease, we quantified 188 analytes in CSF and serum from living human patients with longitudinal (serial) measurements. Notably, several associated with inflammation were elevated in the CSF of infantile gangliosidosis patients, and less so in more slowly progressing forms of juvenile gangliosidosis, but not in MPS disease. Thirteen CSF and two serum biomarker candidates were identified. Five candidate biomarkers were distinguished by persistent elevation in the CSF of patients with the severe infantile phenotype: ENA-78, MCP-1, MIP-1α, MIP-1ß, and TNFR2. Correspondence of abnormal elevation with other variables of disease-i.e., severity of clinical phenotype, differentiation from changes in serum, and lack of abnormality in other neurodegenerative lysosomal diseases-identifies these analytes as biomarkers of neuropathology specific to the gangliosidosis diseases.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Gangliosidoses/diagnóstico , Inflamação/diagnóstico , Adolescente , Biomarcadores/sangue , Sistema Nervoso Central/metabolismo , Quimiocina CCL2/líquido cefalorraquidiano , Quimiocina CCL4/líquido cefalorraquidiano , Quimiocina CXCL5/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Gangliosidoses/metabolismo , Gangliosidose GM1/diagnóstico , Gangliosidose GM1/metabolismo , Humanos , Lactente , Masculino , Receptores Tipo II do Fator de Necrose Tumoral/líquido cefalorraquidiano , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/metabolismo , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/metabolismo , Fatores de Transcrição/líquido cefalorraquidiano
11.
J Neurosci ; 33(25): 10195-208, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23785136

RESUMO

Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of ß-galactosidase and ß-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.


Assuntos
Gangliosídeos/fisiologia , Gangliosidoses/metabolismo , Animais , Animais Geneticamente Modificados , Gangliosídeos/metabolismo , Gangliosidoses/patologia , Gangliosidoses/terapia , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/fisiopatologia , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Gangliosidose GM1/fisiopatologia , Terapia Genética , Humanos , Lisossomos/metabolismo , Camundongos
12.
Nat Genet ; 14(3): 348-52, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8896570

RESUMO

The GM2 gangliosidoses, Tay-Sachs and Sandhoff diseases, are caused by mutations in the HEXA (alpha-subunit) and HEXB (beta-subunit) genes, respectively. Each gene encodes a subunit for the heterodimeric lysosomal enzyme, beta-hexosaminidase A (alpha beta), as well as for the homodimers beta-hexosaminidase B (beta beta) and S (alpha alpha). In this study, we have produced mice that have both Hexa and Hexb genes disrupted through interbreeding Tay-Sachs (Hexa-/-) and Sandhoff (Hexb-/-) disease model mice. Lacking both the alpha and beta-subunits these 'double knockout' mice displayed a total deficiency of all forms of lysosomal beta-hexosaminidase including the small amount of beta-hexosaminidase S present in the Sandhoff disease model mice. More surprisingly, these mice showed the phenotypic, pathologic and biochemical features of the mucopolysaccharidoses, lysosomal storage diseases caused by the accumulation of glycosaminoglycans. The mucopolysaccharidosis phenotype is not seen in the Tay-Sachs or Sandhoff disease model mice or in the corresponding human patients. This result demonstrates that glycosaminoglycans are crucial substrates for beta-hexosaminidase and that their lack of storage in Tay-Sachs and Sandhoff diseases is due to functional redundancy in the beta-hexosaminidase enzyme system.


Assuntos
Gangliosidoses/genética , Lisossomos/enzimologia , Camundongos Knockout , Mucopolissacaridoses/genética , beta-N-Acetil-Hexosaminidases/genética , Animais , Comportamento Animal , Encéfalo/patologia , Cromatografia em Camada Fina , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Gangliosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/urina , Hexosaminidase A , Hexosaminidase B , Humanos , Isoenzimas , Fígado/enzimologia , Masculino , Camundongos , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Baço/patologia
13.
Biochim Biophys Acta ; 1808(3): 589-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21130729

RESUMO

Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca²+-exchanger NCX1 and sarcoplasmic reticulum Ca²+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca²+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca²+ for refilling the sarcoplasmic reticulum.


Assuntos
Membrana Celular/metabolismo , Vasos Coronários/metabolismo , Microdomínios da Membrana/metabolismo , Músculo Liso/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Vasos Coronários/citologia , Citoesqueleto/metabolismo , Gangliosidoses/metabolismo , Transporte de Íons , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Músculo Liso/citologia , Príons/metabolismo , Suínos
14.
Nat Commun ; 13(1): 5924, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207292

RESUMO

Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Gangliosidoses , Progranulinas/metabolismo , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Gangliosídeos/metabolismo , Gangliosidoses/metabolismo , Granulinas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Fosfatos/metabolismo , Progranulinas/genética
15.
Glycoconj J ; 27(3): 297-308, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20186478

RESUMO

Sandhoff and Tay-Sachs disease are autosomal recessive GM2 gangliosidoses where a deficiency of lysosomal beta-hexosaminidase results in storage of glycoconjugates. Imino sugar (2-acetamido-1,4-imino-1,2,4-trideoxy-L-arabinitol) inhibition of beta-hexosaminidase in murine RAW264.7 macrophage-like cells led to lysosomal storage of glycoconjugates that were characterised structurally using fluorescence labelling of the free or glycolipid-derived oligosaccharides followed by HPLC and mass spectrometry. Stored glycoconjugates were confirmed as containing non-reducing GlcNAc or GalNAc residues resulting from the incomplete degradation of N-linked glycoprotein oligosaccharide and glycolipids, respectively. When substrate reduction therapeutics N-butyl-deoxynojirimycin (NB-DNJ) or N-butyldeoxygalactonojirimycin (NB-DGJ) were applied to the storage phenotype cells, an increase in glucosylated and galactosylated oligosaccharide species was observed due to endoplasmic reticulum alpha-glucosidases and lysosomal beta-galactosidase inhibition, respectively. Hexosaminidase inhibition triggered a tightly regulated cytokine-mediated inflammatory response that was normalised using imino sugars NB-DNJ and NB-DGJ, which restored the GM2 ganglioside storage burden but failed to reduce the levels of GA2 glycolipid or glycoprotein-derived N-linked oligosaccharides. Using a chemically induced gangliosidosis phenotype that can be modulated with substrate lowering drugs, the critical role of GM2 ganglioside in the progression of inflammatory disease is also demonstrated.


Assuntos
Glicoesfingolipídeos/metabolismo , Imino Açúcares/farmacologia , Lisossomos/metabolismo , Oligossacarídeos/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Gangliosidoses/metabolismo , Cinética , Lisossomos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Cells ; 9(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260765

RESUMO

(1) Lysosomal storage diseases are rare inherited disorders with no standardized or commercially available tests for biochemical diagnosis. We present factors influencing the quality of enzyme assays for metachromatic leukodystrophy (MLD) and gangliosidoses (GM1; GM2 variants B and 0) and validate the reliability and stability of testing in a retrospective analysis of 725 samples. (2) Patient leukocytes were isolated from ethylene-diamine-tetra-acetic acid (EDTA) blood and separated for subpopulation experiments using density gradient centrifugation or magnetic cell separation. Enzyme activities in whole leukocyte lysate and leukocyte subpopulations were determined. (3) The enzyme activities in leukocyte subpopulations differed significantly. Compared to lymphocytes, the respective enzyme activities were 2.31-4.57-fold higher in monocytes and 1.64-2.81-fold higher in granulocytes. During sample preparation, a considerable amount of the lysosomal enzymes was released from granulocytes. Nevertheless, with the sample preparation method used here, total leukocyte count proved to be more accurate than total protein amount as a reference unit for enzyme activities. Subsequent analysis of 725 individuals showed clear discrimination of enzyme activities in patient samples (48 MLD; 21 gangliosidoses), with a sensitivity of 100% and specificity of 98-99%.


Assuntos
Gangliosidoses/diagnóstico , Gangliosidoses/enzimologia , Leucócitos Mononucleares/metabolismo , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/enzimologia , Ensaios Enzimáticos/métodos , Granulócitos/enzimologia , Humanos , Leucócitos Mononucleares/enzimologia , Monócitos/enzimologia , Estudos Retrospectivos
17.
J Cell Biol ; 154(3): 535-47, 2001 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-11481344

RESUMO

Sphingolipids (SLs) are plasma membrane constituents in eukaryotic cells which play important roles in a wide variety of cellular functions. However, little is known about the mechanisms of their internalization from the plasma membrane or subsequent intracellular targeting. We have begun to study these issues in human skin fibroblasts using fluorescent SL analogues. Using selective endocytic inhibitors and dominant negative constructs of dynamin and epidermal growth factor receptor pathway substrate clone 15, we found that analogues of lactosylceramide and globoside were internalized almost exclusively by a clathrin-independent ("caveolar-like") mechanism, whereas an analogue of sphingomyelin was taken up approximately equally by clathrin-dependent and -independent pathways. We also showed that the Golgi targeting of SL analogues internalized via the caveolar-like pathway was selectively perturbed by elevated intracellular cholesterol, demonstrating the existence of two discrete Golgi targeting pathways. Studies using SL-binding toxins internalized via clathrin-dependent or -independent mechanisms confirmed that endogenous SLs follow the same two pathways. These findings (a) provide a direct demonstration of differential SLs sorting into early endosomes in living cells, (b) provide a "vital marker" for endosomes derived from caveolar-like endocytosis, and (c) identify two independent pathways for lipid transport from the plasma membrane to the Golgi apparatus in human skin fibroblasts.


Assuntos
Antígenos CD , Membrana Celular/metabolismo , Clatrina/metabolismo , Globosídeos/farmacocinética , Complexo de Golgi/metabolismo , Lactosilceramidas/farmacocinética , Proteínas Adaptadoras de Transdução de Sinal , Compostos de Boro/farmacocinética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caveolina 1 , Caveolinas/metabolismo , Células Cultivadas , Dinaminas , Endocitose/fisiologia , Endossomos/metabolismo , Fibroblastos/citologia , Corantes Fluorescentes/farmacocinética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Gangliosidoses/metabolismo , Proteínas de Fluorescência Verde , Humanos , Indicadores e Reagentes/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/farmacocinética , Mutagênese/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/fisiologia , Pele/citologia
18.
Science ; 229(4712): 470-2, 1985 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-3925555

RESUMO

Beta-galactosidase-deficient siblings in two litters of English springer spaniel puppies showed a progressive neurological impairment, dwarfism, orbital hypertelorism, and dysostosis multiplex. An excess of GM1-ganglioside was found in the brain. Three abnormal oligosaccharides were present in samples of urine, brain, liver, and cartilage. Light microscopy of selected tissue specimens revealed cytoplasmic vacuoles in neurons, circulating blood cells, macrophages, and chondrocytes. Ultrastructural studies demonstrated that these membrane-bound vacuoles were of two types--one containing lamellated membranes and the other, finely granular material. These clinical and pathological findings are similar to those observed in human patients affected by the infantile form of GM1-gangliosidosis.


Assuntos
Doenças Ósseas Metabólicas/veterinária , Doenças do Cão/enzimologia , Gangliosidoses/veterinária , Intolerância à Lactose/veterinária , Animais , Doenças Ósseas Metabólicas/enzimologia , Doenças Ósseas Metabólicas/genética , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Feminino , Gangliosídeo G(M1) , Gangliosidoses/enzimologia , Gangliosidoses/genética , Gangliosidoses/patologia , Humanos , Intolerância à Lactose/genética , Intolerância à Lactose/metabolismo , Masculino , Neurônios/patologia , Oligossacarídeos/metabolismo , Linhagem , Vacúolos/patologia
19.
Science ; 194(4263): 442-5, 1976 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-824730

RESUMO

A 9-month-old dog with a history of progressive motor dysfunction was shown to have a deficiency in brain beta-galactosidase activity. The canine disease, like that of children with GM1 gangliosidosis, is characterized by accumulation of GM1 ganglioside in the brain, liver, and spleen, and membranous cytoplasmic bodies in neurons. The dog's pedigree suggests an autosomal recessive pattern of inheritance.


Assuntos
Doenças do Cão/enzimologia , Gangliosídeo G(M1)/metabolismo , Galactosidases/deficiência , Gangliosídeos/metabolismo , Gangliosidoses/veterinária , Animais , Encéfalo/enzimologia , Química Encefálica , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Gangliosidoses/genética , Gangliosidoses/patologia , Genes Recessivos , Humanos , Fígado/análise , Linhagem , Baço/análise
20.
Science ; 196(4293): 1014-7, 1977 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-404709

RESUMO

Two kitteens with progressive neurologic disease had increased concentrations of GM2 ganglioside in their cerebral cortex. Examination under the light microscope revealed cytoplasmic vacuolation of neurons and hepatocytes. Transmission and scanning electron microscopy demosntrated cytoplasmic inclusions encompassed by membranes in various central nervous system cell types and in hepatocytes. Beta-D-N-acetyl-hexosaminidase activity was reduced to about 1.0 percent of normal in brain, liver, and cultured skin fibroblasts of the diseased kittens; both major electrophoretic forms, A and B, of the enzyme were deficient. In fibroblasts from the parents of the diseased kittens, this enzyme activity was intermediate between that of affected and normal cats, suggesting an autosomal recessive mode of inheritance of the enzyme defect. Histopahtological and ultrastructural lesions, glycolipid storage, enzyme defect, and pattern of inheritance are similar to those of human GM2 gangliosidosis type 2.


Assuntos
Doenças do Gato/enzimologia , Gangliosidoses/veterinária , Hexosaminidases/deficiência , Animais , Encéfalo/enzimologia , Doenças do Gato/genética , Doenças do Gato/patologia , Gatos , Feminino , Fibroblastos/enzimologia , Gangliosídeo G(M2)/metabolismo , Galactosidases/metabolismo , Gangliosidoses/patologia , Genes Recessivos , Humanos , Células de Kupffer/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Neurônios/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA