Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.149
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723628

RESUMO

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Assuntos
Vírus da Hepatite B , Transcrição Reversa , Humanos , Genoma Viral/genética , Vírus da Hepatite B/genética , Mutação , Ribossomos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular
2.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614100

RESUMO

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Assuntos
Vírus Bluetongue , Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , RNA Viral , Empacotamento do Genoma Viral , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Vírus Bluetongue/metabolismo , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Animais , RNA Viral/metabolismo , RNA Viral/genética , Genoma Viral/genética , Montagem de Vírus , Tomografia com Microscopia Eletrônica , Vírion/metabolismo , Vírion/genética , Vírion/ultraestrutura , Modelos Moleculares , Linhagem Celular , Cricetinae
3.
Cell ; 187(20): 5604-5619.e14, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39208798

RESUMO

We use cryoelectron microscopy (cryo-EM) as a sequence- and culture-independent diagnostic tool to identify the etiological agent of an agricultural pandemic. For the past 4 years, American insect-rearing facilities have experienced a distinctive larval pathology and colony collapse of farmed Zophobas morio (superworm). By means of cryo-EM, we discovered the causative agent: a densovirus that we named Zophobas morio black wasting virus (ZmBWV). We confirmed the etiology of disease by fulfilling Koch's postulates and characterizing strains from across the United States. ZmBWV is a member of the family Parvoviridae with a 5,542 nt genome, and we describe intersubunit interactions explaining its expanded internal volume relative to human parvoviruses. Cryo-EM structures at resolutions up to 2.1 Å revealed single-strand DNA (ssDNA) ordering at the capsid inner surface pinned by base-binding pockets in the capsid inner surface. Also, we demonstrated the prophylactic potential of non-pathogenic strains to provide cross-protection in vivo.


Assuntos
Besouros , Microscopia Crioeletrônica , Animais , Besouros/virologia , Parvovirus/genética , Parvovirus/química , DNA de Cadeia Simples/química , Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Genoma Viral , Densovirus/genética , Densovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/epidemiologia , Modelos Moleculares , Filogenia , Larva/virologia
4.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174579

RESUMO

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Assuntos
Bacteriófagos , Vírus de RNA , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Filogenia , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Viroma
5.
Cell ; 185(15): 2708-2724, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868275

RESUMO

Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.


Assuntos
Bacteriófagos , Cromossomos , Animais , Bacteriófagos/genética , Cromossomos/genética , Escherichia coli/genética , Genoma Viral , Genômica/métodos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Biologia Sintética/métodos
6.
Cell ; 185(8): 1297-1307.e11, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35325592

RESUMO

Spindle- or lemon-shaped viruses infect archaea in diverse environments. Due to the highly pleomorphic nature of these virions, which can be found with cylindrical tails emanating from the spindle-shaped body, structural studies of these capsids have been challenging. We have determined the atomic structure of the capsid of Sulfolobus monocaudavirus 1, a virus that infects hosts living in nearly boiling acid. A highly hydrophobic protein, likely integrated into the host membrane before the virions assemble, forms 7 strands that slide past each other in both the tails and the spindle body. We observe the discrete steps that occur as the tail tubes expand, and these are due to highly conserved quasiequivalent interactions with neighboring subunits maintained despite significant diameter changes. Our results show how helical assemblies can vary their diameters, becoming nearly spherical to package a larger genome and suggest how all spindle-shaped viruses have evolved from archaeal rod-like viruses.


Assuntos
Vírus de Archaea , Vírus de Archaea/química , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , Vírion/metabolismo
7.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051367

RESUMO

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante/métodos , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , Vacinação , Sequenciamento Completo do Genoma , Adulto Jovem
8.
Cell ; 184(17): 4392-4400.e4, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34289344

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic underscores the need to better understand animal-to-human transmission of coronaviruses and adaptive evolution within new hosts. We scanned more than 182,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes for selective sweep signatures and found a distinct footprint of positive selection located around a non-synonymous change (A1114G; T372A) within the spike protein receptor-binding domain (RBD), predicted to remove glycosylation and increase binding to human ACE2 (hACE2), the cellular receptor. This change is present in all human SARS-CoV-2 sequences but not in closely related viruses from bats and pangolins. As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (wild-type [WT]-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect that was 20 times greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Linhagem Celular , Quirópteros/virologia , Chlorocebus aethiops , Reservatórios de Doenças , Evolução Molecular , Genoma Viral , Humanos , Modelos Moleculares , Mutação , Filogenia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
9.
Cell ; 184(8): 2229-2238.e13, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33691138

RESUMO

The biosafety level 3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research. Here, we report a trans-complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans-complementation system consists of two components: a genomic viral RNA containing ORF3 and envelope gene deletions, as well as mutated transcriptional regulator sequences, and a producer cell line expressing the two deleted genes. Trans-complementation of the two components generates virions that can infect naive cells for only one round but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. Thus, the trans-complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.


Assuntos
COVID-19/virologia , Contenção de Riscos Biológicos/métodos , SARS-CoV-2 , Células A549 , Animais , Chlorocebus aethiops , Cricetinae , Teste de Complementação Genética/métodos , Genoma Viral , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , RNA Viral , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Células Vero , Virulência , Replicação Viral
10.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499854

RESUMO

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodos
11.
Cell ; 184(17): 4380-4391.e14, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147139

RESUMO

Despite the discovery of animal coronaviruses related to SARS-CoV-2, the evolutionary origins of this virus are elusive. We describe a meta-transcriptomic study of 411 bat samples collected from a small geographical region in Yunnan province, China, between May 2019 and November 2020. We identified 24 full-length coronavirus genomes, including four novel SARS-CoV-2-related and three SARS-CoV-related viruses. Rhinolophus pusillus virus RpYN06 was the closest relative of SARS-CoV-2 in most of the genome, although it possessed a more divergent spike gene. The other three SARS-CoV-2-related coronaviruses carried a genetically distinct spike gene that could weakly bind to the hACE2 receptor in vitro. Ecological modeling predicted the co-existence of up to 23 Rhinolophus bat species, with the largest contiguous hotspots extending from South Laos and Vietnam to southern China. Our study highlights the remarkable diversity of bat coronaviruses at the local scale, including close relatives of both SARS-CoV-2 and SARS-CoV.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Coronavirus/genética , Evolução Molecular , SARS-CoV-2/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sudeste Asiático , China , Coronavirus/classificação , Coronavirus/isolamento & purificação , Fenômenos Ecológicos e Ambientais , Genoma Viral , Humanos , Modelos Moleculares , Filogenia , SARS-CoV-2/fisiologia , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais
12.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33743211

RESUMO

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Assuntos
Interações Hospedeiro-Patógeno , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Genoma Viral , Humanos , Pulmão/virologia , Masculino , Espectrometria de Massas , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/ultraestrutura , Células Vero
13.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852237

RESUMO

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Assuntos
Proteínas do Capsídeo/genética , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vírus Defeituosos Interferentes/patogenicidade , Modelos Animais de Doenças , Genoma Viral/genética , Humanos , Influenza Humana , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecções Respiratórias/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
14.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33275900

RESUMO

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Assuntos
Substituição de Aminoácidos , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Ácido Aspártico/análise , Ácido Aspártico/genética , COVID-19/epidemiologia , Genoma Viral , Glicina/análise , Glicina/genética , Humanos , Mutação , SARS-CoV-2/crescimento & desenvolvimento , Reino Unido/epidemiologia , Virulência , Sequenciamento Completo do Genoma
15.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32392465

RESUMO

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Assuntos
Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Vírus Gigantes/fisiologia , Capsídeo/metabolismo , Vírus de DNA/genética , Genoma Viral/genética , Proteômica/métodos , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Viroses/genética , Vírus/genética
16.
Cell ; 181(2): 223-227, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220310

RESUMO

The ongoing pandemic of a new human coronavirus, SARS-CoV-2, has generated enormous global concern. We and others in China were involved in the initial genome sequencing of the virus. Herein, we describe what genomic data reveal about the emergence SARS-CoV-2 and discuss the gaps in our understanding of its origins.


Assuntos
Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Pneumonia Viral/virologia , Animais , Animais Selvagens , COVID-19 , China , Infecções por Coronavirus/transmissão , DNA Ambiental , Genoma Viral , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2 , Análise de Sequência de RNA , Zoonoses/virologia
17.
Cell ; 181(4): 877-893.e21, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32304664

RESUMO

Influenza polymerase uses unique mechanisms to synthesize capped and polyadenylated mRNAs from the genomic viral RNA (vRNA) template, which is packaged inside ribonucleoprotein particles (vRNPs). Here, we visualize by cryoelectron microscopy the conformational dynamics of the polymerase during the complete transcription cycle from pre-initiation to termination, focusing on the template trajectory. After exiting the active site cavity, the template 3' extremity rebinds into a specific site on the polymerase surface. Here, it remains sequestered during all subsequent transcription steps, forcing the template to loop out as it further translocates. At termination, the strained connection between the bound template 5' end and the active site results in polyadenylation by stuttering at uridine 17. Upon product dissociation, further conformational changes release the trapped template, allowing recycling back into the pre-initiation state. Influenza polymerase thus performs transcription while tightly binding to and protecting both template ends, allowing efficient production of multiple mRNAs from a single vRNP.


Assuntos
Vírus da Influenza A/genética , Transcrição Gênica/genética , Replicação Viral/genética , Domínio Catalítico , Simulação por Computador , Microscopia Crioeletrônica/métodos , Genoma Viral/genética , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/genética , Influenza Humana/virologia , Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade
18.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447177

RESUMO

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/metabolismo , Empacotamento do DNA , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/virologia , Montagem de Vírus , Microscopia Crioeletrônica/métodos , DNA Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
19.
Cell ; 172(6): 1168-1172, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522738

RESUMO

We know less about viruses than any other lifeform. Fortunately, metagenomics has led to a massive expansion in the known diversity of the virosphere. Here, we discuss how metagenomics has changed our understanding of RNA viruses and present some of the remaining challenges, including characterization of the "dark matter" of divergent viral genomes.


Assuntos
Variação Genética , Genoma Viral/genética , Metagenômica/métodos , Vírus/genética , Evolução Molecular , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus/classificação
20.
Cell ; 172(6): 1260-1270, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522746

RESUMO

Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.


Assuntos
Bacteriófagos/genética , Biologia/tendências , Genoma Viral/genética , Genômica/tendências , Biologia Molecular/tendências , Bactérias/genética , Bactérias/virologia , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Variação Genética , Genômica/métodos , Lisogenia/genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA