Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 85-111, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30901263

RESUMO

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.


Assuntos
Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Fungos/química , Fungos/metabolismo , Glicerofosfolipídeos/química , Glicolipídeos/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/instrumentação , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Esfingolipídeos/química , Esteróis/química
2.
FASEB J ; 38(13): e23725, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959016

RESUMO

SLC40A1 is the sole iron export protein reported in mammals. In humans, its dysfunction is responsible for ferroportin disease, an inborn error of iron metabolism transmitted as an autosomal dominant trait and observed in different ethnic groups. As a member of the major facilitator superfamily, SLC40A1 requires a series of conformational changes to enable iron translocation across the plasma membrane. The influence of lipids on protein stability and its conformational changes has been little investigated to date. Here, we combine molecular dynamics simulations of SLC40A1 embedded in membrane bilayers with experimental alanine scanning mutagenesis to analyze the specific role of glycerophospholipids. We identify four basic residues (Lys90, Arg365, Lys366, and Arg371) that are located at the membrane-cytosol interface and consistently interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) molecules. These residues surround a network of salt bridges and hydrogens bonds that play a critical role in stabilizing SLC40A1 in its basal outward-facing conformation. More deeply embedded in the plasma membrane, we identify Arg179 as a charged amino acid residue also tightly interacting with lipid polar heads. This results in a local deformation of the lipid bilayer. Interestingly, Arg179 is adjacent to Arg178, which forms a functionally important salt-bridge with Asp473 and is a recurrently associated with ferroportin disease when mutated to glutamine. We demonstrate that the two p.Arg178Gln and p.Arg179Thr missense variants have similar functional behaviors. These observations provide insights into the role of phospholipids in the formation/disruption of the SLC40A1 inner gate, and give a better understanding of the diversity of molecular mechanisms of ferroportin disease.


Assuntos
Proteínas de Transporte de Cátions , Ferro , Simulação de Dinâmica Molecular , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/química , Ferro/metabolismo , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química
3.
Anal Chem ; 95(34): 12600-12604, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37584663

RESUMO

With the increasing number of lipidomic studies, there is a need for an efficient and automated analysis of lipidomic data. One of the challenges faced by most existing approaches to lipidomic data analysis is lipid nomenclature. The systematic nomenclature of lipids contains all available information about the molecule, including its hierarchical representation, which can be used for statistical evaluation. The Lipid Over-Representation Analysis (LORA) web application (https://lora.metabolomics.fgu.cas.cz) analyzes this information using the Java-based Goslin framework, which translates lipid names into a standardized nomenclature. Goslin provides the level of lipid hierarchy, including information on headgroups, acyl chains, and their modifications, up to the "complete structure" level. LORA allows the user to upload the experimental query and reference data sets, select a grammar for lipid name normalization, and then process the data. The user can then interactively explore the results and perform lipid over-representation analysis based on selected criteria. The results are graphically visualized according to the lipidome hierarchy. The lipids present in the most over-represented terms (lipids with the highest number of enriched shared structural features) are defined as Very Important Lipids (VILs). For example, the main result of a demo data set is the information that the query is significantly enriched with "glycerophospholipids" containing "acyl 20:4" at the "sn-2 position". These terms define a set of VILs (e.g., PC 18:2/20:4;O and PE 16:0/20:4(5,8,10,14);OH). All results, graphs, and visualizations are summarized in a report. LORA is a tool focused on the smart mining of epilipidomics data sets to facilitate their interpretation at the molecular level.


Assuntos
Glicerofosfolipídeos , Lipídeos , Lipídeos/análise , Glicerofosfolipídeos/química , Software , Lipidômica
4.
Anal Chem ; 95(11): 5117-5125, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36898165

RESUMO

The Paternò-Büchi (PB) derivatization of carbon-carbon double bond (C═C) has been increasingly employed with tandem mass spectrometry to analyze unsaturated lipids. It enables the discovery of altered or uncanonical lipid desaturation metabolism, which would be otherwise undetected by conventional methods. Although highly useful, the reported PB reactions only provide moderate yield (∼30%). Herein, we aim to determine the key factors that affect the PB reactions and develop a system with improved capabilities for lipidomic analysis. An Ir(III) photocatalyst is chosen as the triplet energy donor for the PB reagent under 405 nm light irradiation, while phenylglyoxalate and its charge-tagging version, pyridylglyoxalate, are developed as the most efficient PB reagents. The above visible-light PB reaction system provides higher PB conversions than all previously reported PB reactions. Around 90% conversion can be achieved at high concentrations (>0.5 mM) for different classes of lipids but drops as the lipid concentration decreases. The visible-light PB reaction has then been integrated with shotgun and liquid chromatography-based workflows. The limits of detection for locating C═C in standard lipids of glycerophospholipids (GPLs) and triacylglycerides (TGs) are in the sub-nM to nM range. More than 600 distinct GPLs and TGs have been profiled at the C═C location level or the sn-position level from the total lipid extract of bovine liver, demonstrating that the developed method is capable of large-scale lipidomic analysis.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Glicerofosfolipídeos/química , Cromatografia Líquida , Carbono/química
5.
Nat Chem Biol ; 17(1): 89-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32989299

RESUMO

TRAAK is an ion channel from the two-pore domain potassium (K2P) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K2P4.1 toward lipids remains poorly understood. Here we show the two isoforms of K2P4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K2P4.1. Liposome potassium flux assays with K2P4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K2P4.1.


Assuntos
Ácidos Fosfatídicos/química , Canais de Potássio/química , Potássio/química , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Cátions Monovalentes , Clonagem Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Humanos , Ativação do Canal Iônico , Transporte de Íons , Cinética , Lipossomos/química , Lipossomos/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Pichia/genética , Pichia/metabolismo , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Org Chem ; 88(15): 11253-11257, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36449029

RESUMO

Glycerophospholipids are major components of cellular membranes and provide important signaling molecules. Besides shaping membrane properties, some bind to specific receptors to activate biological pathways. Untangling the roles of individual glycerophospholipids requires clearly defined molecular species, a challenge that can be best addressed through chemical synthesis. However, glycerophospholipid syntheses are often lengthy due to the contrasting polarities found within these lipids. We now report a general strategy to quickly access glycerophospholipids via opening of a phosphate triester epoxide with carboxylic acids catalyzed by Jacobsen's Co(salen) complex. We show that this method can be applied to a variety of commercially available fatty acids, photoswitchable fatty acids, and other carboxylic acids to provide the corresponding glycerophosphate derivatives.


Assuntos
Ácidos Graxos , Glicerofosfolipídeos , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Membrana Celular/metabolismo , Ácidos Carboxílicos/metabolismo
7.
J Lipid Res ; 63(6): 100223, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537528

RESUMO

The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.


Assuntos
Ácidos Graxos , Neoplasias , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/química , Metabolismo dos Lipídeos , Transdução de Sinais
8.
J Biol Chem ; 297(1): 100851, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089703

RESUMO

Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.


Assuntos
Proteína Quinase CDC2/genética , Ciclina A2/genética , Fosfolipases A1/genética , Proteína Quinase CDC2/química , Membrana Celular/química , Membrana Celular/genética , Ciclina A2/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/genética , Células HEK293 , Humanos , Fosfolipases A1/química , Fosfolipases A1/metabolismo , Fosforilação/genética , Paraplegia Espástica Hereditária/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Anal Chem ; 94(7): 3268-3277, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35135194

RESUMO

Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.


Assuntos
Cardiolipinas , Glicerofosfolipídeos , Glicerofosfolipídeos/química , Íons , Espectrometria de Massas/métodos , Espectrofotometria Ultravioleta , Raios Ultravioleta
10.
Anal Chem ; 94(44): 15367-15376, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36286543

RESUMO

Unsaturated lipids containing single or more carbon-carbon double bonds (C═C) within tissues are closely associated with various types of diseases. Mass spectrometry imaging (MSI) has been used to study the spatial distribution of lipid C═C location isomers in tissue sections. However, comprehensive characterization of lipid C═C location isomers using MSI remains challenging. Herein, we established an on-tissue charge-switching Paternò-Büchi (PB) derivatization method using 3-acetylpyridine (3-AP) as a reaction reagent, which can be used to detect and assign C═C location of glycerophospholipids (GPLs) as well as neutral lipids, such as fatty acids (FAs), under the same experimental workflow using matrix-assisted laser desorption/ionization (MALDI)-MSI. High coverage of mono- and poly-unsaturated C═C location isomers among various lipid classes including FA, phosphatidylcholine (PC), and sulfatide (SHexCer) in distinct regions of the mouse brain and kidney was visualized using MALDI-MS/MS imaging. This method has also been applied to map the spatial distribution of lipid C═C location isomers in the Alzheimer's disease (AD) mice model for the first time, which provides a new tool to study the relationships between the distribution of lipid structural diversity and neurodegenerative diseases.


Assuntos
Glicerofosfolipídeos , Espectrometria de Massas em Tandem , Animais , Camundongos , Espectrometria de Massas em Tandem/métodos , Glicerofosfolipídeos/química , Piridinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Carbono/química
11.
Anal Chem ; 94(48): 16759-16767, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36412261

RESUMO

The Paternò-Büchi (PB) reaction is a carbon-carbon double bond (C═C)-specific derivatization reaction that can be used to pinpoint the location(s) of C═C(s) in unsaturated lipids and quantitate the location of isomers when coupled with tandem mass spectrometry (MS/MS). As the data of PB-MS/MS are increasingly generated, the establishment of a corresponding data analysis tool is highly needed. Herein, LipidOA, a machine-learning and prior-knowledge-based data analysis tool, is developed to analyze PB-MS/MS data generated by liquid chromatography-mass spectrometry workflows. LipidOA consists of four key functional modules to realize an annotation of glycerophospholipid (GPL) structures at the fatty acyl-specific C═C location level. These include (1) data preprocessing, (2) picking C═C diagnostic ions, (3) de novo annotation, and (4) result ranking. Importantly, in the result-ranking module, the reliability of structural annotation is sorted via the use of a machine learning classifier and comparison to the total fatty acid database generated from the same sample. LipidOA is trained and validated by four PB-MS/MS data sets acquired using different PB reagents on mass spectrometers of different resolutions and of different biological samples. Overall, LipidOA provides high precision (higher than 0.9) and a wide coverage for structural annotations of GPLs. These results demonstrate that LipidOA can be used as a robust and flexible tool for annotating PB-MS/MS data collected under different experimental conditions using different lipidomic workflows.


Assuntos
Glicerofosfolipídeos , Espectrometria de Massas em Tandem , Glicerofosfolipídeos/química , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Carbono , Aprendizado de Máquina
12.
Anal Chem ; 94(32): 11352-11359, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917227

RESUMO

Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.


Assuntos
Glicerofosfolipídeos , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida/métodos , Glicerofosfolipídeos/química , Íons , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta
13.
Anal Chem ; 94(37): 12621-12629, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070546

RESUMO

The biological impact of ether glycerophospholipids (GP) in peroxisomal disorders and other diseases makes them significant targets as biomarkers for diagnostic assays or deciphering pathology of the disorders. Ether lipids include both plasmanyl and plasmenyl lipids, which each contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. This linkage, in contrast to traditional diacyl GPs, precludes their detailed characterization by mass spectrometry via traditional collisional-based MS/MS techniques. Additionally, the isomeric nature of plasmanyl and plasmenyl pairs of ether lipids introduces a further level of complexity that impedes analysis of these species. Here, we utilize 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for detailed characterization of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) plasmenyl and plasmanyl lipids in mouse brain tissue. 213 nm UVPD-MS enables the successful differentiation of these four ether lipid subtypes for the first time. We couple this UVPD-MS methodology to reversed-phase liquid chromatography (RPLC) for characterization and relative quantitation of ether lipids from normal and diseased (Pex7 deficiency modeling the peroxisome biogenesis disorder, RCDP) mouse brain tissue, highlighting the ability to pinpoint specific structural features of ether lipids that are important for monitoring aberrant lipid metabolism in peroxisomal disorders.


Assuntos
Glicerofosfolipídeos , Transtornos Peroxissômicos , Animais , Éter , Éteres/química , Etil-Éteres , Glicerofosfolipídeos/química , Camundongos , Fosfatidilcolinas/química , Fosfatidiletanolaminas , Espectrometria de Massas em Tandem/métodos
14.
Anal Bioanal Chem ; 414(18): 5275-5285, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35147717

RESUMO

Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations.


Assuntos
Fosfolipídeos , Prata , Cátions , Glicerofosfolipídeos/química , Fosfolipídeos/química , Espectrofotometria Infravermelho
15.
Reprod Biomed Online ; 43(2): 257-268, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34256996

RESUMO

RESEARCH QUESTION: Membrane lipid replacement (MLR) of oxidized membrane lipids can restore sperm cellular membrane functionality and help improve surface protein stability during cryopreservation. What are the effects of MLR with nano-micelles made from a glycerophospholipid (GPL) mixture and cholesterol-loaded cyclodextrin (CLC), on the cryosurvival and expression of acrosome-related proteins in thawed human spermatozoa? DESIGN: Twenty samples were used to determine the optimum level of nano-micelles by incubation of semen with different concentrations of GPL (0.1 and 1%) and CLC (1 and 2 mg/ml) (including GPL-0.1, GPL-1, CLC-1, CLC-2, CLC-1/GPL-0.1, CLC-2/GPL-0.1, CLC-1/GPL-1 and CLC-2/GPL-1) before cryopreservation. Then, 30 semen samples were collected, and each sample was divided into the following three aliquots: fresh, frozen control and frozen incubated with optimum level of nano-micelles (0.1% GPL and 1 mg/ml CLC). RESULTS: CLC-1/GPL-0.1 and GPL-0.1 significantly increased motility parameters. CLC-1, GPL-0.1 and CLC-1/GPL-0.1 significantly improved viability rate compared with frozen control group. Significantly higher mitochondrial activity and acrosome integrity, and a lower rate of apoptosis, were observed in the CLC-1/GPL-0.1 compared with the frozen control group. The expression ratios of arylsulfatase A (ARSA), serine protease 37 (PRSS37), serine protease inhibitor Kazal-type 2 (SPINK2) and equatorin (EQTN) significantly increased compared with the frozen control group. CONCLUSIONS: Modification of membrane cholesterol and GPL mixtures in spermatozoa enhances their acrosome protein integrity by inhibiting early apoptotic changes and spontaneous acrosome reactions.


Assuntos
Colesterol/farmacologia , Ciclodextrinas/farmacologia , Glicerofosfolipídeos/farmacologia , Lipídeos de Membrana/metabolismo , Sêmen/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Acrossomo/ultraestrutura , Reação Acrossômica/efeitos dos fármacos , Colesterol/química , Criopreservação/métodos , Crioprotetores/farmacologia , Ciclodextrinas/química , Glicerofosfolipídeos/química , Humanos , Masculino , Lipídeos de Membrana/química , Micelas , Nanopartículas , Estabilidade Proteica/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Sêmen/citologia , Análise do Sêmen , Preservação do Sêmen/métodos
16.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500631

RESUMO

The 'core' metabolome of the Bacteroidetes genus Chitinophaga was recently discovered to consist of only seven metabolites. A structural relationship in terms of shared lipid moieties among four of them was postulated. Here, structure elucidation and characterization via ultra-high resolution mass spectrometry (UHR-MS) and nuclear magnetic resonance (NMR) spectroscopy of those four lipids (two lipoamino acids (LAAs), two lysophosphatidylethanolamines (LPEs)), as well as several other undescribed LAAs and N-acyl amino acids (NAAAs), identified during isolation were carried out. The LAAs represent closely related analogs of the literature-known LAAs, such as the glycine-serine dipeptide lipids 430 (2) and 654. Most of the here characterized LAAs (1, 5-11) are members of a so far undescribed glycine-serine-ornithine tripeptide lipid family. Moreover, this study reports three novel NAAAs (N-(5-methyl)hexanoyl tyrosine (14) and N-(7-methyl)octanoyl tyrosine (15) or phenylalanine (16)) from Olivibacter sp. FHG000416, another Bacteroidetes strain initially selected as best in-house producer for isolation of lipid 430. Antimicrobial profiling revealed most isolated LAAs (1-3) and the two LPE 'core' metabolites (12, 13) active against the Gram-negative pathogen M. catarrhalis ATCC 25238 and the Gram-positive bacterium M. luteus DSM 20030. For LAA 1, additional growth inhibition activity against B. subtilis DSM 10 was observed.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Bacteroidetes/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Técnicas de Tipagem Bacteriana/métodos
17.
J Biol Chem ; 294(49): 18557-18570, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619519

RESUMO

The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Antibacterianos/química , Colesterol/análogos & derivados , Colesterol/química , Escherichia coli/metabolismo , Glicerofosfolipídeos/química , Lipossomos/química , Espectroscopia de Ressonância Magnética , Técnicas de Patch-Clamp , Fosfatidilcolinas/química , Fosfatidilgliceróis/química
18.
Anal Chem ; 92(1): 1219-1227, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31763816

RESUMO

Shotgun lipidomics has recently gained popularity for lipid analysis. Conventionally, shotgun analysis of glycerophospholipids via direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides glycerophospholipid (GPL) class (i.e., headgroup composition) and fatty acyl composition. Reliant on low-energy collision-induced dissociation (CID), traditional ESI-MS/MS fails to define fatty acyl regiochemistry along the glycerol backbone or carbon-carbon double bond position(s) in unsaturated fatty acyl substituents. Therefore, isomeric GPLs are often unresolved, representing a significant challenge for shotgun-MS approaches. We developed a top-down shotgun-MS method utilizing gas-phase ion/ion charge inversion chemistry that provides near-complete GPL structural identification. First, in negative ion mode, CID of mass-selected GPL anions generates fatty acyl carboxylate anions via fragmentation of ester bonds linking the fatty acyl substituents at the sn-1 and sn-2 positions of the glycerol backbone. Product anions, including fatty acyl carboxylate ions, were then derivatized in the mass spectrometer via an ion/ion charge inversion reaction with tris-phenanthroline magnesium dications. Subsequent CID of charge-inverted fatty acyl complex cations yielded isomer-specific product ion spectra that permit (i) unambiguous assignment of carbon-carbon double bond position(s) and (ii) relative quantitation of isomeric fatty acyl substituents. The outlined strategy was applied to the analysis of targeted GPLs extracted from human plasma, including several proposed plasma biomarkers. A single experiment thus facilitates assignment of the GPL headgroup, fatty acyl composition, carbon-carbon double bond position(s) in unsaturated fatty acyl chains, and, in some cases, fatty acyl sn-position and relative abundances for isomeric fatty acyl substituents. Ultimately, this MSn platform paired with ion/ion chemistry permitted identification of major, and some minor, isomeric contributors that are unresolved using conventional ESI-MS/MS.


Assuntos
Glicerofosfolipídeos/química , Gases/química , Íons/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
Anal Chem ; 92(13): 9146-9155, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479092

RESUMO

Glycerophospholipids (GPLs), one of the main components of bacterial cell membranes, exhibit high levels of structural complexity that are directly correlated with biophysical membrane properties such as permeability and fluidity. This structural complexity arises from the substantial variability in the individual GPL structural components such as the acyl chain length and headgroup type and is further amplified by the presence of modifications such as double bonds and cyclopropane rings. Here we use liquid chromatography coupled to high-resolution and high-mass-accuracy ultraviolet photodissociation mass spectrometry for the most in-depth study of bacterial GPL modifications to date. In doing so, we unravel a diverse array of unexplored GPL modifications, ranging from acyl chain hydroxyl groups to novel headgroup structures. Along with characterizing these modifications, we elucidate general trends in bacterial GPL unsaturation elements and thus aim to decipher some of the biochemical pathways of unsaturation incorporation in bacterial GPLs. Finally, we discover aminoacyl-PGs not only in Gram-positive bacteria but also in Gram-negative C. jejuni, advancing our knowledge of the methods of surface charge modulation that Gram-negative organisms may adopt for antibiotic resistance.


Assuntos
Glicerofosfolipídeos/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Raios Ultravioleta , Cromatografia Líquida de Alta Pressão , Glicerofosfolipídeos/análise , Glicerofosfolipídeos/metabolismo , Espectrometria de Massas , Fotólise/efeitos da radiação
20.
Anal Chem ; 92(16): 11250-11259, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32667194

RESUMO

In lipidomic analysis by direct mass spectrometry (MS), high abundance lipids with high ionizability (such as glycerophospholipids) would cause ion suppression to lipids with poor ionizability and low abundance (such as glycolipids, sphingolipids, or glycerides), which largely limits the detection coverage for lipidomics. In this work, TiO2-based liquid microjunction surface sampling (LMJSS) coupled with MS was used for separation of glycerides, phospholipids and glycolipids/sphingolipids in biological samples and rapid analysis of lipids in different classes with high lipidome coverage. We found that, in nonaqueous aprotic solvents, lipids with a glycosyl or sphingosine group could be selectively separated from lipids with a phosphate group (selectivity >10) after being coenriched on TiO2 by tuning the solvent composition. Accordingly, a selective multistep extraction method was developed by loading the biosamples on TiO2 slides in neutral aprotic solvent, and sequentially eluting glycerides in pure acetonitrile, glycerophospholipids in 6% ammonia-94% acetonitrile (v/v) and glycolipids/sphingolipids in 5% formic acid-95% methanol (v/v) by LMJSS probe from TiO2 slide. Each eluate from TiO2 slide was directly delivered by LMJSS to MS for analysis. The total detection time with three desorption steps would be controlled in 3 min. The method performance for each lipid class was evaluated using lipid standards, including matrix effects (107-128%), RSDs (0.4-16%), linearity (0.98-0.99), detection limits (5-3000 ng/mL), the adsorption equilibrium constants (102-104) and adsorption capacity (1-38 µg/mm2) of TiO2 coated slides to lipids. Finally, the TiO2-based-LMJSS-MS method was applied to lipidomic analysis for blood plasma and brain tissue, and compared with direct infusion MS. Results showed that (2-5)-fold more sphingolipids/glycolipids and 40-50 more glycerophospholipids/glycerides were identified in both plasma and brain extract by the new method comparing with direct infusion MS method. Detected lipids were quantified with standard addition calibration method, and the absolute quantitation results measured by TiO2-based-LMJSS-MS were verified with that by the traditional LC-MS method (correlation coefficient >0.98, slope of correlation line = 0.87-1.05).


Assuntos
Glicerofosfolipídeos/sangue , Glicolipídeos/sangue , Esfingolipídeos/sangue , Titânio/química , Adsorção , Animais , Glicerofosfolipídeos/química , Glicerofosfolipídeos/isolamento & purificação , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Humanos , Limite de Detecção , Lipidômica/métodos , Extração Líquido-Líquido/métodos , Espectrometria de Massas/métodos , Ratos , Esfingolipídeos/química , Esfingolipídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA