Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608839

RESUMO

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Assuntos
Arabidopsis , Cromatografia de Afinidade , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Cromatografia de Afinidade/métodos , Proteínas de Arabidopsis/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem , Proteínas de Plantas/metabolismo
2.
Proteomics ; 24(12-13): e2300281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38171879

RESUMO

Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.


Assuntos
Glicopeptídeos , Glicosilação , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Humanos , Espectrometria de Mobilidade Iônica/métodos , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Animais , Glicômica/métodos , Glicoproteínas/química , Glicoproteínas/análise , Glicoproteínas/metabolismo
3.
J Proteome Res ; 23(4): 1443-1457, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38450643

RESUMO

We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are prominent for other therapeutic IgGs. After excluding in-source fragmentation of glycopeptide ions from the results, a linear correlation was observed between fluorescently labeled N-glycan and glycopeptide abundances over a dynamic range of 500. Different charge states of human IgG-derived glycopeptides containing a wider variety of abundant attached glycans were also investigated to examine the effects of the charge state on ion abundances. These revealed a linear dependence of glycopeptide abundance on the mass of the glycan with higher charge states favoring higher-mass glycans. Findings indicate that the mass spectrometry-based bottom-up approach can provide results as accurate as those of glycan release studies while revealing the origin of each attached glycan. These site-specific relative abundances are conveniently displayed and compared using previously described glycopeptide abundance distribution spectra "GADS" representations. Mass spectrometry data are available from the MAssIVE repository (MSV000093562).


Assuntos
Imunoglobulina G , Espectrometria de Massas em Tandem , Humanos , Glicosilação , Glicopeptídeos/análise , Polissacarídeos/química , Íons
4.
J Proteome Res ; 23(2): 585-595, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38231888

RESUMO

LC-MS-based N-glycosylation profiling in four human serum IgG subclasses (IgG1, IgG2, IgG3, and IgG4) often requires additional affinity-based enrichment of specific IgG subclasses, owing to the high amino acid sequence similarity of Fc glycopeptides among subclasses. Notably, for IgG4 and the major allotype of IgG3, the glycopeptide precursors share identical retention time and mass and therefore cannot be distinguished based on precursor or glycan fragmentation. Here, we developed a parallel reaction monitoring (PRM)-based method for quantifying Fc glycopeptides through combined transitions generated from both glycosidic and peptide bond fragmentation. The latter enables the subpopulation of IgG3 and IgG4 to be directly distinguished according to mass differences without requiring further enrichment of specific IgG subclasses. In addition, a multinozzle electrospray emitter coupled to a capillary flow liquid chromatograph was used to increase the robustness and detection sensitivity of the method for low-yield peptide backbone fragment ions. The gradient was optimized to decrease the overall run time and make the method compatible with high-throughput analysis. We demonstrated that this method can be used to effectively monitor the relative levels of 13 representative glycoforms, with a good limit of detection for individual IgG subclasses.


Assuntos
Glicopeptídeos , Espectrometria de Massa com Cromatografia Líquida , Humanos , Cromatografia Líquida/métodos , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Imunoglobulina G/análise , Fragmentos de Peptídeos , Polissacarídeos
5.
J Proteome Res ; 23(7): 2661-2673, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38888225

RESUMO

The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.


Assuntos
Glicopeptídeos , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Polissacarídeos/química , Polissacarídeos/análise , Glicosilação , Glicoproteínas/química , Glicoproteínas/análise , Espectrometria de Massas por Ionização por Electrospray , Íons/química , Sequência de Aminoácidos , Humanos , Cromatografia Líquida , Cromatografia de Fase Reversa , Dados de Sequência Molecular
6.
J Proteome Res ; 23(7): 2431-2440, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965920

RESUMO

Alpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.


Assuntos
Orosomucoide , Humanos , Orosomucoide/metabolismo , Orosomucoide/química , Feminino , Gravidez , Cromatografia por Troca Iônica/métodos , Glicosilação , Espectrometria de Massas/métodos , Fucose/química , Fucose/metabolismo , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/sangue
7.
J Proteome Res ; 23(5): 1571-1582, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38594959

RESUMO

Reproducibility is a "proteomic dream" yet to be fully realized. A typical data analysis workflow utilizing extracted ion chromatograms (XICs) often treats the information path from identification to quantification as a one-way street. Here, we propose an XIC-centric approach in which the data flow is bidirectional: identifications are used to derive XICs whose information is in turn applied to validate the identifications. In this study, we employed liquid chromatography-mass spectrometry data from glycoprotein and human hair samples to illustrate the XIC-centric concept. At the core of this approach was XIC-based monoisotope repicking. Taking advantage of the intensity information for all detected isotopes across the whole range of an XIC peak significantly improved the accuracy and uncovered misidentifications originating from monoisotope assignment mistakes. It could also rescue non-top-ranked glycopeptide hits. Identification of glycopeptides is particularly susceptible to precursor mass errors for their low abundances, large masses, and glycans differing by 1 or 2 Da easily confused as isotopes. In addition, the XIC-centric strategy significantly reduced the problem of one XIC peak associated with multiple unique identifications, a source of quantitative irreproducibility. Taken together, the proposed approach can lead to improved identification and quantification accuracy and, ultimately, enhanced reproducibility in proteomic data analyses.


Assuntos
Cabelo , Proteômica , Proteômica/métodos , Humanos , Cromatografia Líquida/métodos , Cabelo/química , Reprodutibilidade dos Testes , Glicoproteínas/análise , Glicoproteínas/química , Glicopeptídeos/análise , Glicopeptídeos/química , Análise de Dados , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
8.
J Proteome Res ; 23(6): 2137-2147, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38787631

RESUMO

N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount. Here, we developed a glycosylation enrichment method based on lectin and a single-pot, solid-phase-enhanced sample preparation (SP3) technology, termed lectin-based SP3 technology (LectinSP3). LectinSP3 immobilized lectin on the SP3 beads for N-glycopeptide enrichment. It could identify over 1100 N-glycosylation sites and 600 N-glycoproteins from 10 µg of mouse testis peptides. Furthermore, using the LectinSP3 method, we characterized the N-glycoproteome of 1000 mouse oocytes in three replicates and identified a total of 363 N-glycosylation sites from 215 N-glycoproteins. Bioinformatics analysis revealed that these oocyte N-glycoproteins were mainly enriched in cell adhesion, fertilization, and sperm-egg recognition. Overall, the LectinSP3 method has all procedures performed in one tube, using magnetic beads. It is suitable for analysis of a low amount of samples and is expected to be easily adaptable for automation. In addition, our mouse oocyte protein N-glycosylation profiling could help further characterize the regulation of oocyte functions.


Assuntos
Glicopeptídeos , Glicoproteínas , Lectinas , Oócitos , Proteômica , Animais , Oócitos/metabolismo , Camundongos , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/análise , Lectinas/química , Lectinas/metabolismo , Proteômica/métodos , Feminino , Glicopeptídeos/análise , Glicopeptídeos/química , Processamento de Proteína Pós-Traducional , Masculino , Testículo/metabolismo , Testículo/química , Proteoma/análise , Proteoma/metabolismo
9.
J Proteome Res ; 23(7): 2474-2494, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850255

RESUMO

Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.


Assuntos
Acinetobacter baumannii , Glicoproteínas , Polissacarídeos , Proteômica , Serina , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/química , Glicosilação , Serina/metabolismo , Serina/química , Proteômica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Polissacarídeos/metabolismo , Polissacarídeos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Cromatografia Líquida
10.
J Proteome Res ; 23(8): 3571-3584, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994555

RESUMO

Aberrant glycosylation has gained significant interest for biomarker discovery. However, low detectability, complex glycan structures, and heterogeneity present challenges in glycoprotein assay development. Using haptoglobin (Hp) as a model, we developed an integrated platform combining functionalized magnetic nanoparticles and zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) for highly specific glycopeptide enrichment, followed by a data-independent acquisition (DIA) strategy to establish a deep cancer-specific Hp-glycosylation profile in hepatitis B virus (HBV, n = 5) and hepatocellular carcinoma (HCC, n = 5) patients. The DIA strategy established one of the deepest Hp-glycosylation landscapes (1029 glycopeptides, 130 glycans) across serum samples, including 54 glycopeptides exclusively detected in HCC patients. Additionally, single-shot DIA searches against a DIA-based spectral library outperformed the DDA approach by 2-3-fold glycopeptide coverage across patients. Among the four N-glycan sites on Hp (N-184, N-207, N-211, N-241), the total glycan type distribution revealed significantly enhanced detection of combined fucosylated-sialylated glycans, which were the most dominant glycoforms identified in HCC patients. Quantitation analysis revealed 48 glycopeptides significantly enriched in HCC (p < 0.05), including a hybrid monosialylated triantennary glycopeptide on the N-184 site with nearly none-to-all elevation to differentiate HCC from the HBV group (HCC/HBV ratio: 2462 ± 766, p < 0.05). In summary, DIA-MS presents an unbiased and comprehensive alternative for targeted glycoproteomics to guide discovery and validation of glyco-biomarkers.


Assuntos
Carcinoma Hepatocelular , Glicopeptídeos , Haptoglobinas , Neoplasias Hepáticas , Polissacarídeos , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/metabolismo , Glicosilação , Haptoglobinas/metabolismo , Haptoglobinas/análise , Haptoglobinas/química , Polissacarídeos/sangue , Polissacarídeos/química , Polissacarídeos/análise , Glicopeptídeos/sangue , Glicopeptídeos/análise , Glicopeptídeos/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Biomarcadores Tumorais/sangue , Hepatite B/virologia , Hepatite B/sangue , Vírus da Hepatite B/química , Interações Hidrofóbicas e Hidrofílicas
11.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39073901

RESUMO

N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.


Assuntos
Astenozoospermia , Fucose , Sêmen , Humanos , Masculino , Astenozoospermia/metabolismo , Sêmen/metabolismo , Sêmen/química , Fucose/metabolismo , Glicoproteínas/metabolismo , Proteômica , Adulto , Regulação para Cima , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosilação , Glicopeptídeos/metabolismo , Glicopeptídeos/análise
12.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39115362

RESUMO

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Assuntos
Colostro , Lactalbumina , Leite , Lactalbumina/metabolismo , Lactalbumina/química , Animais , Glicosilação , Colostro/química , Colostro/metabolismo , Bovinos , Leite/química , Leite/metabolismo , Feminino , Lactação/metabolismo , Amino Açúcares/química , Amino Açúcares/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/química , Glicopeptídeos/análise , Lactose/metabolismo , Lactose/química
13.
Anal Chem ; 96(4): 1498-1505, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38216336

RESUMO

Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment in shot-gun glycoproteomics to enhance the glycopeptide signal and minimize the ionization competition of peptides. In this work, we have developed a novel hydrophilic material (glycoHILIC) based on glycopeptides and peptides to provide hydrophilic properties. GlycoHILIC was synthesized by oxidizing cotton and then reacting the resulting aldehyde with the N-terminus of the glycopeptide or peptide by reductive amination. Due to the large amount of hydrophilic carbohydrates and hydrophilic amino acids contained in glycopeptides, glycoHILIC showed significantly better enrichment of glycopeptides than cotton itself. Our results demonstrate that glycoHILIC has high selectivity, a low detection limit, and good stability. Over 257 unique N-linked glycosylation sites in 1477 intact N-glycopeptides from 146 glycoproteins were identified from 1 µL of human serum using glycoHILIC. Serum analysis of pancreatic cancer patients found that 38 N-glycopeptides among 21 glycoproteins changed significantly, of which 7 N-glycopeptides increased and 31 N-glycopeptides decreased. These results demonstrate that glycoHILIC can be used for glycopeptide enrichment and analysis.


Assuntos
Glicopeptídeos , Glicoproteínas , Humanos , Glicopeptídeos/análise , Glicosilação , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas
14.
Anal Chem ; 96(13): 5086-5094, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513651

RESUMO

Glycosylation is a key modulator of the functional state of proteins. Recent developments in large-scale analysis of intact glycopeptides have enabled the identification of numerous glycan structures that are relevant in pathophysiological processes. However, one motif found in N-glycans, poly-N-acetyllactosamine (polyLacNAc), still poses a substantial challenge to mass spectrometry-based glycoproteomic analysis due to its relatively low abundance and large size. In this work, we developed approaches for the systematic mapping of polyLacNAc-elongated N-glycans in melanoma cells. We first evaluated five anion exchange-based matrices for enriching intact glycopeptides and selected two materials that provided better overall enrichment efficiency. We then tested the robustness of the methodology by quantifying polyLacNAc-containing glycopeptides as well as changes in protein fucosylation and sialylation. Finally, we applied the optimal enrichment methods to discover glycopeptides containing polyLacNAc motifs in melanoma cells and found that integrins and tetraspanins are substantially modified with these structures. This study demonstrates the feasibility of glycoproteomic approaches for identification of glycoproteins with polyLacNAc motifs.


Assuntos
Integrinas , Melanoma , Humanos , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Tetraspaninas , Polissacarídeos/química
15.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206681

RESUMO

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Elétrons , Peptídeos/química , Polissacarídeos/química
16.
Anal Chem ; 96(27): 10986-10994, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935274

RESUMO

Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.


Assuntos
Glicopeptídeos , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Animais , Glicosilação , Elétrons , Cromatografia Líquida , Camundongos , Humanos
17.
Anal Chem ; 96(22): 8956-8964, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776126

RESUMO

Glycoproteins play important roles in numerous physiological processes and are often implicated in disease. Analysis of site-specific protein glycobiology through glycoproteomics has evolved rapidly in recent years thanks to hardware and software innovations. Particularly, the introduction of parallel accumulation serial fragmentation (PASEF) on hybrid trapped ion mobility time-of-flight mass spectrometry instruments combined deep proteome sequencing with separation of (near-)isobaric precursor ions or converging isotope envelopes through ion mobility separation. However, the reported use of PASEF in integrated glycoproteomics workflows to comprehensively capture the glycoproteome is still limited. To this end, we developed an integrated methodology using timsTOF Pro 2 to enhance N-glycopeptide identifications in complex mixtures. We systematically optimized the ion optics tuning, collision energies, mobility isolation width, and the use of dopant-enriched nitrogen gas (DEN). Thus, we obtained a marked increase in unique glycopeptide identification rates compared to standard proteomics settings, showcasing our results on a large set of glycopeptides. With short liquid chromatography gradients of 30 min, we increased the number of unique N-glycopeptide identifications in human plasma samples from around 100 identifications under standard proteomics conditions to up to 1500 with our optimized glycoproteomics approach, highlighting the need for tailored optimizations to obtain comprehensive data.


Assuntos
Glicopeptídeos , Proteômica , Proteômica/métodos , Humanos , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/sangue , Fluxo de Trabalho , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/sangue , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Anal Chem ; 96(21): 8822-8829, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38698557

RESUMO

A fully automated online enrichment and separation system for intact glycopeptides, named AutoGP, was developed in this study by integrating three different columns in a nano-LC system. Specifically, the peptide mixture from the enzymatic digestion of a complex biological sample was first loaded on a hydrophilic interaction chromatography (HILIC) column. The nonglycopeptides in the sample were washed off the column, and the glycopeptides retained by the HILIC column were eluted to a C18 trap column to achieve an automated glycopeptide enrichment. The enriched glycopeptides were further eluted to a C18 column for separation, and the separated glycopeptides were eventually analyzed by using an orbitrap mass spectrometer (MS). The optimal operating conditions for AutoGP were systemically studied, and the performance of the fully optimized AutoGP was compared with a conventional manual system used for glycopeptide analysis. The experimental evaluation shows that the total number of glycopeptides identified is at least 1.5-fold higher, and the median coefficient of variation for the analyses is at least 50% lower by using AutoGP, as compared to the results acquired by using the manual system. In addition, AutoGP can perform effective analysis even with a 1-µg sample amount, while a 10-µg sample at least will be needed by the manual system, implying an order of magnitude better sensitivity of AutoGP. All the experimental results have consistently proven that AutoGP can be used for much better characterization of intact glycopeptides.


Assuntos
Glicopeptídeos , Glicopeptídeos/análise , Glicopeptídeos/isolamento & purificação , Glicopeptídeos/química , Humanos , Automação , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas
19.
Anal Chem ; 96(26): 10506-10514, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874382

RESUMO

Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.


Assuntos
Fucose , Polissacarídeos , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/análise , Fucose/química , Fucose/metabolismo , Glicosilação , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Glicopeptídeos/química , Glicopeptídeos/análise , Glicopeptídeos/metabolismo
20.
J Transl Med ; 22(1): 331, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575942

RESUMO

BACKGROUND: A better diagnostic marker is in need to distinguish breast cancer from suspicious breast lesions. The abnormal glycosylation of haptoglobin has been documented to assist cancer diagnosis. This study aims to evaluate disease-specific haptoglobin (DSHp)-ß N-glycosylation as a potential biomarker for breast cancer diagnosis. METHODS: DSHp-ß chains of 497 patients with suspicious breast lesions who underwent breast surgery were separated from serum immunoinflammatory-related protein complexes. DSHp-ß N-glycosylation was quantified by mass spectrometric analysis. After missing data imputation and propensity score matching, patients were randomly assigned to the training set (n = 269) and validation set (n = 113). Logistic regression analysis was employed in model and nomogram construction. The diagnostic performance was analyzed with receiver operating characteristic and calibration curves. RESULTS: 95 N-glycopeptides at glycosylation sites N207/N211, N241, and N184 were identified in 235 patients with benign breast diseases and 262 patients with breast cancer. DSHp-ß N-tetrafucosyl and hexafucosyl were significantly increased in breast cancer compared with benign diseases (p < 0.001 and p = 0.001, respectively). The new diagnostic model and nomogram included GN2F2, G6N3F6, GN2FS at N184, G-N&G2S2, G2&G3NFS, G2N3F, GN3 at N207/N211, CEA, CA153, and could reliably distinguish breast cancer from benign diseases. For the training set, validation set, and training and validation sets, the area under the curves (AUCs) were 0.80 (95% CI: 0.75-0.86, specificity: 87%, sensitivity: 62%), 0.77 (95% CI:0.69-0.86, specificity: 75%, sensitivity: 69%), and 0.80 (95% CI:0.76-0.84, specificity: 77%, sensitivity: 68%), respectively. CEA, CA153, and their combination yielded AUCs of 0.62 (95% CI: 0.56-0.67, specificity: 29%, sensitivity: 90%), 0.65 (95% CI: 0.60-0.71, specificity: 74%, sensitivity: 51%), and 0.67 (95% CI: 0.62-0.73, specificity: 60%, sensitivity: 68%), respectively. CONCLUSIONS: The combination of DSHp-ß N-glycopeptides, CEA, and CA153 might be a better serologic marker to differentiate between breast cancer and benign breast diseases. The dysregulated N-glycosylation of serum DSHp-ß could provide insights into breast tumorigenesis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Nomogramas , Haptoglobinas/química , Glicosilação , Glicopeptídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA