RESUMO
Various applications related to glucose catalysis have led to the development of functional nanozymes with glucose oxidase (GOX)-like activity. However, the unsatisfactory catalytic activity of nanozymes is a major challenge for their practical applications due to their inefficient hydrogen and electron transfer. Herein, we present the synthesis of AuFe/polydopamine (PDA) superparticles that exhibit photothermal-enhanced GOX-like activity. Experimental investigations and theoretical calculations reveal that the glucose oxidation process catalyzed by AuFe/PDA follows an artificial-cofactor-mediated hydrogen atom transfer mechanism, which facilitates the generation of carbon-centered radical intermediates. Rather than depending on charged Au surfaces for thermodynamically unstable hydride transfer, Fe(III)-coordinated PDA with abundant amino and phenolic hydroxyl groups serves as cofactor mimics, facilitating both hydrogen atom and electron transfer in the catalytic process. Finally, leveraging the photothermal-enhanced GOX-like and catalase-like activities of AuFe/PDA, we establish a highly sensitive and accurate point-of-care testing blood glucose determination with exceptional anti-jamming capabilities.
Assuntos
Glucose Oxidase , Ouro , Hidrogênio , Indóis , Polímeros , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Ouro/química , Hidrogênio/química , Transporte de Elétrons , Indóis/química , Polímeros/química , Glucose/química , Catálise , Oxirredução , Glicemia/análise , Ferro/química , HumanosRESUMO
Bacteria invasion is the main factor hindering the wound-healing process. However, current antibacterial therapies inevitably face complex challenges, such as the abuse of antibiotics or severe inflammation during treatment. Here, a drug-free bioclay enzyme (Bio-Clayzyme) consisting of Fe2+-tannic acid (TA) network-coated kaolinite nanoclay and glucose oxidase (GOx) was reported to destroy harmful bacteria via bimetal antibacterial therapy. At the wound site, Bio-Clayzyme was found to enhance the generation of toxic hydroxyl radicals for sterilization via cascade catalysis of GOx and Fe2+-mediated peroxidase mimetic activity. Specifically, the acidic characteristics of the infection microenvironment accelerated the release of Al3+ from kaolinite, which further led to bacterial membrane damage and amplified the antibacterial toxicity of Fe2+. Besides, Bio-Clayzyme also performed hemostasis and anti-inflammatory functions inherited from Kaol and TA. By the combination of hemostasis and anti-inflammatory and bimetal synergistic sterilization, Bio-Clayzyme achieves efficient healing of infected wounds, providing a revolutionary approach for infectious wound regeneration.
Assuntos
Antibacterianos , Glucose Oxidase , Cicatrização , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose Oxidase/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Esterilização/métodos , Argila/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Ferro/químicaRESUMO
Redox potentiometry has emerged as a new platform for in vivo sensing, with improved neuronal compatibility and strong tolerance against sensitivity variation caused by protein fouling. Although enzymes show great possibilities in the fabrication of selective redox potentiometry, the fabrication of an enzyme electrode to output open-circuit voltage (EOC) with fast response remains challenging. Herein, we report a concept of novel enzymatic galvanic redox potentiometry (GRP) with improved time response coupling the merits of the high selectivity of enzyme electrodes with the excellent biocompatibility and reliability of GRP sensors. With a glucose biosensor as an illustration, we use flavin adenine dinucleotide-dependent glucose dehydrogenase as the recognition element and carbon black as the potential relay station to improve the response time. We find that the enzymatic GRP biosensor rapidly responds to glucose with a good linear relationship between EOC and the logarithm of glucose concentration within a range from 100 µM to 2.65 mM. The GRP biosensor shows high selectivity over O2 and coexisting neurochemicals, good reversibility, and sensitivity and can in vivo monitor glucose dynamics in rat brain. We believe that this study will pave a new platform for the in vivo potentiometric biosensing of chemical events with high reliability.
Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Potenciometria , Reprodutibilidade dos Testes , Glucose Oxidase/metabolismo , Eletrodos , Glucose , Oxirredução , Glucose 1-Desidrogenase/metabolismoRESUMO
Innovative signal amplification and transduction play pivotal roles in bioanalysis. Herein, cascading CRISPR/Cas and the nanozyme are integrated with electronic amplification in an organic photoelectrochemical transistor (OPECT) to enable triple signal amplification, which is exemplified by the miRNA-triggered CRISPR/Cas13a system and polyoxometalate nanozyme for OPECT detection of miRNA-21. The CRISPR/Cas13a-enabled release of glucose oxidase could synergize with peroxidase-like SiW12 to induce catalytic precipitation on the photogate, inhibiting the interfacial mass transfer and thus the significant suppression of the channel current. The as-developed OPECT sensor demonstrates good sensitivity and selectivity for miRNA-21 detection, with a linear range from 1 fM to 10 nM and an ultralow detection limit of 0.53 fM. This study features the integration of bio- and nanoenzyme cascade and electronic triple signal amplification for OPECT detection.
Assuntos
Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Glucose Oxidase , MicroRNAs , Transistores Eletrônicos , MicroRNAs/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Biossensoriais , Humanos , Processos Fotoquímicos , Limite de DetecçãoRESUMO
Organic photoelectrochemical transistor (OPECT) has emerged as a promising technique for biomolecule detection, yet its operational rationale remains limited due to its short development time. This study introduces a stable tandem catalysis protocol by synergizing the enzyme-incorporated metal-organic frameworks (E-MOFs) with polyoxometalate (POM) nanozyme for sensitive OPECT bioanalysis. The zeolitic imidazolate framework-8 (ZIF-8) acts as the skeleton to protect the encapsulated glucose oxidase (GOx), allowing the stable catalytic generation of H2O2. With peroxidase-like activity, a phosphotungstic acid hydrate (PW12) is then able to utilize the H2O2 to induce the biomimetic precipitation on the photogate, ultimately resulting in the altered device characteristics for quantitative detection. This work reveals the potential and versatility of an engineered enzymatic system as a key enabler to achieve novel OPECT bioanalysis, which is believed to offer a feasible framework to explore new operational rationale in optoelectronic and bioelectronic detection.
Assuntos
Técnicas Eletroquímicas , Glucose Oxidase , Peróxido de Hidrogênio , Estruturas Metalorgânicas , Compostos de Tungstênio , Estruturas Metalorgânicas/química , Compostos de Tungstênio/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Catálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais , Processos Fotoquímicos , Transistores EletrônicosRESUMO
A triple signal amplification strategy was integrated with a built-in double electrode and external energy storage device to fabricate a novel self-powered biosensor for ultrasensitive detection of miRNA-21. Specifically, DNA tetrahedra and haripin2-glucose oxidase are modified on the surface of the biocathode and bioanode by catalytic hairpin assembly (CHA) to achieve dual signal amplification. Moreover, triple signal amplification is realized by including an external capacitor. Consequently, the as-constructed self-powered biosensor demonstrates a low detection limit of 0.06 fM toward the miRNA-21 assay within the range of 0.1 fM to 10 pM. This study presents a practical and sensitive approach to timely cancer detection.
Assuntos
Técnicas Biossensoriais , Glucose Oxidase , MicroRNAs , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , DNA/química , DNA/genética , Técnicas de Amplificação de Ácido NucleicoRESUMO
A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Smartphone , MicroRNAs/análise , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Limite de Detecção , Paládio/química , Sistemas CRISPR-CasRESUMO
An ultrasensitive self-powered biosensor is constructed for miRNA-21 detection based on Au nanoparticles @ Pd nanorings (Au NPs@Pd NRs) and catalytic hairpin assembly (CHA). The Au NPs@Pd NRs possess excellent electrical conductivity to improve the electron transfer rate and show good elimination of byproduct H2O2 to assist glucose oxidase (GOD) to catalyze glucose; CHA is used as an amplification strategy to effectively enhance the sensitivity of the biosensor. To further amplify the output signal, a capacitor is integrated into the self-powered biosensor. With multiple signal amplification strategies, the self-powered biosensor possesses a linear range of 0.1-10-4 fM and a lower limit of detection (LOD) of 0.032 fM (S/N = 3). In addition, the as-prepared self-powered biosensor displays potential applicability in the assay toward miRNA-21 in human serum samples.
Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Ouro , Nanopartículas Metálicas , MicroRNAs , Paládio , MicroRNAs/análise , MicroRNAs/sangue , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Humanos , Catálise , Paládio/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Limite de Detecção , Técnicas Eletroquímicas , Glucose/análise , Peróxido de Hidrogênio/químicaRESUMO
CRISPR-Cas-based point-of-care testing (POCT) strategies have been widely explored for the detection of diverse biomarkers. However, these methods often require complicated operations, such as careful solution transfer steps, to achieve high sensitivity and accuracy. In this study, we combine a filter membrane-based POCT method with CRISPR-Cas12a for colorimetric detection of biomarkers. For the nucleic acid target, the trans-cleavage activity of CRISPR-Cas12a is directly triggered, cutting the single-stranded DNA linkers on glucose oxidase (GOx)-modified polymer nanoparticles. Due to the size difference between GOx and the polymer nanoparticles, GOx can be separated using a filter membrane. The filtrate containing GOx reacts with the substrate to generate a colorimetric signal. For the non-nucleic acid target, the non-nucleic acid signal is converted into a nucleic acid signal that activates CRISPR-Cas12a, resulting in a colorimetric signal. The entire operation is easy to perform, and the signal can be directly observed via the naked eye, which circumvents the use of costly instruments. The developed strategy holds great promise for accurate and accessible POCT detection of disease biomarkers in resource-limited settings.
Assuntos
Biomarcadores , Sistemas CRISPR-Cas , Colorimetria , Glucose Oxidase , Sistemas CRISPR-Cas/genética , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Testes Imediatos , Nanopartículas/química , Técnicas Biossensoriais/métodos , Proteínas Associadas a CRISPR/metabolismo , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
The long-term operation feature of enzymatic biofuel cell-based self-powered biosensor (EBFC-SPB) endows them with the potential to execute dual-signal biosensing without having to integrate an extra signal acquisition device. Herein, cobalt and manganese codoped CeO2 nanospheres (CoMn-CeO2 NSs) with glucose-oxidase-like and peroxidase-like activities have been developed as substrate-switched dual-channel signal transduction components in EBFC-SPB for a dual-signal assay of aflatoxin B1 (AFB1). The CoMn-CeO2 NSs modified with aptamer are anchored to a complementary DNA-attached bioanode of EBFC-SPB by base complementary pairing, which catalyze the glucose oxidation together with the glucose oxidase (GOx) on the bioanode. Once the AFB1 appears, CoMn-CeO2 NSs will be released from the bioanode due to the binding specificity of the aptamer, resulting in a decreased catalytic efficiency and the first declining stage of EBFC-SPB. Accompanied by the introduction of H2O2, the residual CoMn-CeO2 NSs on the bioanode switch to peroxidase-like activity and mediate the production of benzo-4-chlorohexadienone (4-CD) precipitate, which increases the steric hindrance and yields another declining stage of EBFC-SPB. By assessing the variation amplitudes during these two declining stages, the dual-signal assay of AFB1 has been realized with satisfying results. This work not only breaks ground in dual-signal bioassays but also deepens the application of nanozymes in EBFC-SPB.
Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Cério , Técnicas Eletroquímicas , Nanosferas , Aflatoxina B1/análise , Aflatoxina B1/metabolismo , Nanosferas/química , Técnicas Biossensoriais/métodos , Cério/química , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Cobalto/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Manganês/químicaRESUMO
Rapid and accurate detection of human epidermal growth factor receptor 2 (HER2) is crucial for the early diagnosis and prognosis of breast cancer. In this study, we reported an iron-manganese ion N-doped carbon single-atom catalyst (FeMn-NCetch/SAC) bimetallic peroxidase mimetic enzyme with abundant active sites etched by H2O2 and further demonstrated unique advantages of single-atom bimetallic nanozymes in generating hydroxyl radicals by density functional theory (DFT) calculations. As a proof of concept, a portable device-dependent electrochemical-photothermal bifunctional immunoassay detection platform was designed to achieve reliable detection of HER2. In the enzyme-linked reaction, H2O2 was generated by substrate catalysis via secondary antibody-labeled glucose oxidase (GOx), while FeMn-NCetch/SAC nanozymes catalyzed the decomposition of H2O2 to form OH*, which catalyzed the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB. The ox-TMB generation was converted from the colorimetric signals to electrical and photothermal signals by applied potential and laser irradiation, which could be employed for the quantitative detection of HER2. With the help of this bifunctional detection technology, HER2 was accurately detected in two ways: photothermally, with a linear scope of 0.01 to 2.0 ng mL-1 and a limit of detection (LOD) of 7.5 pg mL-1, and electrochemically, with a linear scope of 0.01 to 10 ng mL-1 at an LOD of 3.9 pg mL-1. By successfully avoiding environmental impacts, the bifunctional-based immunosensing strategy offers strong support for accurate clinical detection.
Assuntos
Técnicas Eletroquímicas , Receptor ErbB-2 , Smartphone , Humanos , Imunoensaio/métodos , Receptor ErbB-2/análise , Receptor ErbB-2/imunologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Catálise , Limite de Detecção , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Benzidinas/química , Manganês/química , Ferro/química , Neoplasias da Mama , Teoria da Densidade FuncionalRESUMO
Conventional hydrogel microcapsules often suffer from inadequate mechanical stability, hindering their use. Here, water-cored double-network (DN) hydrogel shells are designed, formed by polyacrylamide and calcium alginate networks using triple-emulsion templates. These DN hydrogel shells offer robust mechanical stability, optical transparency, and a precisely-defined cut-off threshold. The feasibility of this platform is demonstrated through the development of a fluorometric glucose sensor. Glucose oxidase is enclosed within the water core, while a pH-responsive fluorescent dye is incorporated into the DN shells. Glucose diffuses into the core through the DN shells, where the glucose oxidase converts glucose into gluconic acid, leading to pH reduction and a subsequent decrease in fluorescence intensity of DN shells. Additionally, the pH-sensitive colorant dissolved in the medium enables visual pH assessment. Thus, glucose levels can be determined using both fluorometric and colorimetric methods. Notably, the DN shells exhibit exceptional stability, enduring intense mechanical stress and cycles of drying and rehydration without leakage. Moreover, the DN shells act as effective barriers, safeguarding glucose oxidase against proteolysis by large disruptive proteins, like pancreatin. This versatile DN shell platform extends beyond glucose oxidase encapsulation, serving as a foundation for various capsule sensors utilizing enzymes and heterogeneous catalysts.
Assuntos
Glucose Oxidase , Glucose , Hidrogéis , Glucose/análise , Glucose/química , Hidrogéis/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Biossensoriais/métodos , Alginatos/química , Resinas Acrílicas/químicaRESUMO
Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.
Assuntos
Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Esterilização/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , GlucoseRESUMO
Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.
Assuntos
Glucose Oxidase , Animais , Glucose Oxidase/metabolismo , Humanos , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Cloroquina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Autofagia/efeitos dos fármacos , Nanopartículas/químicaRESUMO
The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.
Assuntos
Glucose Oxidase , Lipossomos , Sorafenibe , Lipossomos/química , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Animais , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Metabolismo Energético , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , IndóisRESUMO
Pyroptosis, a new mode of regulatory cell death, holds a promising prospect in tumor therapy. The occurrence of pyroptosis can trigger the release of damage-associated molecular patterns (DAMPs) and activate the antitumor immune response. Moreover, enhancing intracellular reactive oxygen species (ROS) generation can effectively induce pyroptosis. Herein, an integrated nanoplatform (hCZAG) based on zeolitic imidazolate framework-8 (ZIF-8) with Cu2+ and Zn2+ as active nodes and glucose oxidase (GOx) loading is constructed to evoke pyroptosis. GOx can effectively elevate intracellular hydrogen peroxide (H2O2) levels to regulate the unfavorable tumor microenvironment (TME). Cu2+ can be reduced to Cu+ by endogenous overexpressed GSH and both Cu2+ and Cu+ can exert Fenton-like activity to promote ROS generation and amplify oxidative stress. In addition, the accumulation of Cu2+ leads to the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), thus resulting in cuproptosis. Notably, the outburst of ROS induced by hCZAG activates Caspase-1 proteins, leads to the cleavage of gasdermin D (GSDMD), and induces pyroptosis. Pyroptosis further elicits an adaptive immune response, leading to immunogenic cell death (ICD). This study provides effective strategies for triggering pyroptosis-mediated immunotherapy and achieving improved therapeutic effects.
Assuntos
Glucose Oxidase , Piroptose , Espécies Reativas de Oxigênio , Microambiente Tumoral , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Humanos , Camundongos , Cobre/química , Peróxido de Hidrogênio/química , Linhagem Celular Tumoral , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Imunidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , ImidazóisRESUMO
Natural and artificial enzyme oxygen-generating systems for photodynamic therapy (PDT) are developed for tumor treatment, yet they have fallen short of the desired efficacy. Moreover, both the enzymes and photosensitizers usually need carriers for efficient delivery to tumor sites. Here, a self-cascade-enhanced multimodal tumor therapy is developed by ingeniously integrating self-cascade-enhanced PDT with Zn2+-overloading therapy. Manganese-porphyrin (TCPP-Mn) is chosen both as the photosensitizer and catalase (CAT) mimic, which can be encapsulated within glucose oxidase (GOx). Acid-responsive zeolitic imidazolate framework-8 (ZIF-8) is applied as the carrier for TCPP-Mn@GOx (T@G), attaining TCPP-Mn@GOx@ZIF-8 (T@G@Z). T@G@Z demonstrates robust anti-tumor ability as follows: upon the structural degradation of ZIF-8, GOx can mediate the oxidation of glucose and generate hydrogen peroxide (H2O2); TCPP-Mn can catalyze H2O2 into O2 for self-cascade-enhanced PDT; meanwhile, the released Zn2+ can enhance oxidative stress and induce mitochondrial dysfunction by destroying mitochondrial membrane potential; furthermore, immunotherapy can be activated to resist primary tumor and tumor metastasis. The self-cascade-enhanced T@G@Z exhibited its potential application for further tumor management.
Assuntos
Glucose Oxidase , Nanomedicina , Oxigênio , Fotoquimioterapia , Oxigênio/química , Nanomedicina/métodos , Humanos , Fotoquimioterapia/métodos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Animais , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Zeolitas/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas/química , Zinco/química , Catalase/metabolismo , Catalase/química , Camundongos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Porfirinas/químicaRESUMO
Hydrogen polysulfides (H2Sn) have emerged as critical physiological mediators that are closely associated with hydrogen sulfide (H2S) signaling. H2Sn exhibit greater nucleophilicity than H2S while also having electrophilic characteristics, enabling unique activities such as protein S-persulfidation. Despite their physiological importance, mechanisms and reactivities of H2Sn remain inadequately explored due to their inherent instability in aqueous environments. Consequently, there is a need to develop biocompatible methods for controlled H2Sn generation to elucidate their behaviors in biological contexts. Herein, we present a dual enzyme system (containing glucose oxidase (GOx) and chloroperoxidase (CPO)) with thioglucose as the substrate to facilitate the controlled release of H2Sn. Fluorescence measurements with SSP4 and the trapping studies allowed us to confirm the production of H2Sn. Such a method may be useful in elucidating the reactivity of hydrogen polysulfides in biological systems as well as provide a potential delivery of H2Sn to target sites for biological applications.
Assuntos
Cloreto Peroxidase , Glucose Oxidase , Sulfetos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Cloreto Peroxidase/metabolismo , Cloreto Peroxidase/química , Sulfetos/química , Sulfetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Aspergillus niger/enzimologiaRESUMO
Biofilm formation is a major challenge in the treatment of tuberculosis, leading to poor treatment outcomes and latent infections. The complex and dense extracellular polymeric substances (EPS) of the biofilm provides safe harbour for bacterium enabling persistence against anti-TB antibiotics. In this study, we demonstrated that rifampicin-encapsulated silk fibroin nanoparticles immobilized with antibiofilm enzymes can disrupt the Mycobacterium smegmatis biofilm and facilitate the anti-bacterial action of Rifampicin (RIF). The EPS of M.smegmatis biofilm predominantly comprised of lipids (48.8 ± 1.32 %) and carbohydrates (34.8 ± 4.70 %), similar to tuberculosis biofilms. Pre-formed biofilm eradication screening revealed that hydrolytic enzymes such as ß-Glucosidase, Glucose oxidase, É-Amylase, Acylase, and Phytase can exhibit biofilm eradication of M.smegmatis biofilms. The enzyme-mediated biofilm disruption was associated with a decrease in hydrophobicity of biofilm surfaces. Treatment with ß-glucosidase and Phytase demonstrated a putative biofilm eradication by reducing the total carbohydrates and lipid composition without causing any significant bactericidal activity. Further, Phytase (250 µg/ml) and ß-Glucosidase (112.5 ± 17.6 µg/ml) conjugated rifampicin-loaded silk fibroin nanoparticles (R-SFNs) exhibited an enhanced anti-bacterial activity against pre-formed M.smegmatis biofilms, compared to free rifampicin (32.5±7 µg/ml). Notably, treatment with ß-glucosidase, Phytase and É-amylase immobilized SFNs decreased the biofilm thickness by â¼98.84 % at 6h, compared to control. Thus, the study highlights that coupling anti-mycobacterial drugs with biofilm-eradicating enzymes such as amylase, phytase or ß-glucosidase can be a potential strategy to improve the TB therapeutic outcomes.
Assuntos
Antibacterianos , Biofilmes , Enzimas Imobilizadas , Fibroínas , Mycobacterium smegmatis , Nanopartículas , Rifampina , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Rifampina/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , 6-Fitase/farmacologia , 6-Fitase/metabolismo , 6-Fitase/química , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Testes de Sensibilidade Microbiana , Glucose Oxidase/farmacologia , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , alfa-Amilases/metabolismo , alfa-Amilases/farmacologia , alfa-Amilases/antagonistas & inibidores , Interações Hidrofóbicas e HidrofílicasRESUMO
Hydrogen-bonded organic frameworks (HOF) represent an emerging category of organic structures with high crystallinity and metal-free, which are not commonly observed in alternative porous organic frameworks. These needle-like porous structure can help in stabilizing enzymes and allow transfer of molecules between enzymes participating in cascade reactions for enhanced substrate channelling. Herein, we systematically synthesized and investigated the stability of HOF at extreme conditions followed by one-pot encapsulation of single and bi-enzyme systems. Firstly, we observed HOF to be stable at pHâ 1 to 14 and at high temperatures (up to 115 °C). Secondly, the encapsulated glucose oxidase enzyme (GOX) showed 80 % and 90 % of its original activity at 70 °C and pHâ 11, respectively. Thirdly, transient time close to 0â seconds was observed for HOF encapsulated bi-enzyme cascade reaction system demonstrating a 4.25-fold improvement in catalytic activity when compared to free enzymes with enhanced substrate channelling. Our findings showcase a facile system synthesized under ambient conditions to encapsulate and stabilize enzymes at extreme conditions.