Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010644, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727826

RESUMO

Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.


Assuntos
Hepacivirus , Proteínas não Estruturais Virais , Hepacivirus/enzimologia , Hepacivirus/metabolismo , Hepatite C/virologia , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125602

RESUMO

The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse ß-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.


Assuntos
Antivirais , Benzofuranos , Genótipo , Hepacivirus , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Benzofuranos/química , Benzofuranos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/genética , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , RNA Polimerase Dependente de RNA
3.
J Biol Chem ; 298(2): 101529, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953856

RESUMO

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Vírus de RNA de Sentido Negativo/efeitos dos fármacos , Vírus de RNA de Sentido Negativo/enzimologia , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/enzimologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Vírus de RNA de Cadeia Positiva/enzimologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
4.
J Virol ; 96(7): e0010722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293767

RESUMO

The propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation. Given the ATPase domain in the NS3 COOH terminus, we tested whether NS3 participates in NS5A phosphorylation similarly to the nucleoside diphosphate kinase-like activity of the rotavirus NSP2 nucleoside triphosphatase (NTPase). Mutations in the NS3 ATP-binding motifs blunted NS5A hyperphosphorylation and phosphorylation at serines 225, 232, and 235, whereas a mutation in the RNA-binding domain did not. The phosphorylation events were not rescued with wild-type NS3 provided in trans. When provided with an NS3 ATPase-compatible ATP analog, N6-benzyl-ATP-γ-S, thiophosphorylated NS5A was detected in the cells expressing the wild-type NS3-NS5B polyprotein. The thiophosphorylation level was lower in the cells expressing NS3-NS5B with a mutation in the NS3 ATP-binding domain. In vitro assays with a synthetic peptide and purified wild-type NS3 followed by dot blotting and mass spectrometry found weak NS5A phosphorylation at serines 222 and 225 that was sensitive to an inhibitor of casein kinase Iα but not helicase. When casein kinase Iα was included in the assay, much stronger phosphorylation was observed at serines 225, 232, and 235. We concluded that NS5A sequential phosphorylation requires the ATP-binding domain of the NS3 helicase and that casein kinase Iα is a potent NS5A kinase. IMPORTANCE For more than 20 years, NS3 was known to participate in NS5A sequential phosphorylation. In the present study, we show for the first time that the ATP-binding domain of NS3 is involved in NS5A phosphorylation. In vitro assays showed that casein kinase Iα is a very potent kinase responsible for NS5A phosphorylation at serines 225, 232, and 235. Our data suggest that ATP binding by NS3 probably results in conformational changes that recruit casein kinase Iα to phosphorylate NS5A, initially at S225 and subsequently at S232 and S235. Our discovery reveals intricate requirements of the structural integrity of NS3 for NS5A hyperphosphorylation and HCV replication.


Assuntos
Hepacivirus , Hepatite C , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Caseína Quinase Ialfa/metabolismo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Fosforilação , Poliproteínas/metabolismo , Domínios Proteicos/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Phys Chem Chem Phys ; 24(4): 2126-2138, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029245

RESUMO

Recent experimental findings pointed out a new mutation in the HCV protease, Q41R, responsible for a significant enhancement of the enzyme's reactivity towards the mitochondrial antiviral-signaling protein (MAVS). The Q41R mutation is located rather far from the active site, and its involvement in the overall reaction mechanism is thus unclear. We used classical molecular dynamics and QM/MM to study the acylation reaction of HCV NS3/4A protease variants bound to MAVS and the NS4A/4B substrate and uncovered the indirect mechanism by which the Q41R mutation plays a critical role in the efficient cleavage of the substrate. Our simulations reveal that there are two major conformations of the MAVS H1'(p) residue for the wild type protease and only one conformation for the Q41R mutant. The conformational space of H1'(p) is restricted by the Q41R mutation due to a π-π stacking between H1'(p) and R41 as well as a strong hydrogen bond between the backbone of H57 and the side chain of R41. Further QM/MM calculations indicate that the complex with the conformation ruled out by the Q41R substitution is a non-reactive species due to its higher free energy barrier for the acylation reaction. Based on our calculations, we propose a kinetic mechanism that explains experimental data showing an increase of apparent rate constants for MAVS cleavage in Q41R mutants. Our model predicts that the non-reactive conformation of the enzyme-substrate complex modulates reaction kinetics like an uncompetitive inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Serina Proteases/química , Proteínas não Estruturais Virais/química , Acilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Domínio Catalítico , Hepacivirus/enzimologia , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Teoria Quântica , Serina Proteases/genética , Serina Proteases/metabolismo , Termodinâmica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(1): 168-176, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587591

RESUMO

Biophysical interactions between proteins and peptides are key determinants of molecular recognition specificity landscapes. However, an understanding of how molecular structure and residue-level energetics at protein-peptide interfaces shape these landscapes remains elusive. We combine information from yeast-based library screening, next-generation sequencing, and structure-based modeling in a supervised machine learning approach to report the comprehensive sequence-energetics-function mapping of the specificity landscape of the hepatitis C virus (HCV) NS3/4A protease, whose function-site-specific cleavages of the viral polyprotein-is a key determinant of viral fitness. We screened a library of substrates in which five residue positions were randomized and measured cleavability of ∼30,000 substrates (∼1% of the library) using yeast display and fluorescence-activated cell sorting followed by deep sequencing. Structure-based models of a subset of experimentally derived sequences were used in a supervised learning procedure to train a support vector machine to predict the cleavability of 3.2 million substrate variants by the HCV protease. The resulting landscape allows identification of previously unidentified HCV protease substrates, and graph-theoretic analyses reveal extensive clustering of cleavable and uncleavable motifs in sequence space. Specificity landscapes of known drug-resistant variants are similarly clustered. The described approach should enable the elucidation and redesign of specificity landscapes of a wide variety of proteases, including human-origin enzymes. Our results also suggest a possible role for residue-level energetics in shaping plateau-like functional landscapes predicted from viral quasispecies theory.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Peptídeo Hidrolases/genética , Serina Proteases/genética , Aprendizado de Máquina Supervisionado , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Farmacorresistência Viral/genética , Metabolismo Energético , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/metabolismo , Metabolômica/métodos , Peptídeo Hidrolases/metabolismo , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
7.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164341

RESUMO

Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of -8.6 kcal/mol and -7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of -7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.


Assuntos
Antivirais/farmacologia , Hepacivirus/enzimologia , Serina Proteases/química , Serina Proteases/metabolismo , Taninos/farmacologia , Terminalia/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Antivirais/efeitos adversos , Antivirais/química , Benzopiranos/farmacologia , Domínio Catalítico , Simulação por Computador , Glucosídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , Extratos Vegetais/farmacologia , Ligação Proteica , Conformação Proteica , Taninos/efeitos adversos , Taninos/química , Proteínas não Estruturais Virais/antagonistas & inibidores
8.
J Biol Chem ; 295(48): 16436-16444, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32938715

RESUMO

The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity. We observe a wide range of efficiency for incorporation of various mismatched base pairs and have uncovered a mechanism in which the rate constant for pyrophosphate release is slowed for certain misincorporation events. This results in an increase in fidelity against these specific misincorporations. Furthermore, we discover that some mismatches are highly unfavorable and cannot be observed under the conditions used here. The calculated fidelity of NS5B ranges between 10-4-10-9 for different mismatches.


Assuntos
Difosfatos/metabolismo , Hepacivirus/enzimologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética
9.
J Biol Chem ; 295(30): 10112-10124, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32457046

RESUMO

NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis. Recently, it has been shown that NS5B can efficiently remove chain terminators by a nucleotide-mediated excision reaction that rescues RNA synthesis. In this study, we use transient-state kinetics to understand the efficiency of inhibition for five nucleoside analogs. We show that CTP analogs are readily incorporated into a growing primer by NS5B but are also efficiently excised. In contrast, although UMP analogs are more slowly incorporated, the excision of UMP is slow and inefficient, and modifications to the 2'-carbon of the UTP ribose ring further decreased rates of excision to an undetectable level. Taken together, these data suggest that the clinical effectiveness of sofosbuvir is largely a function of being intractable to nucleotide-mediated excision compared with similar nucleoside analogs.


Assuntos
Citidina Trifosfato , Hepacivirus/enzimologia , RNA Viral/química , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/química , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química
10.
J Biol Chem ; 295(35): 12426-12436, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32641492

RESUMO

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.


Assuntos
Hepacivirus/enzimologia , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteólise , RNA Viral/biossíntese , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Hepacivirus/genética , Humanos , Lipídeos de Membrana/genética , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , RNA Viral/genética , Serina Proteases/genética , Proteínas não Estruturais Virais/genética
11.
Biochem Biophys Res Commun ; 555: 147-153, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813274

RESUMO

Several existing drugs are currently being tested worldwide to treat COVID-19 patients. Recent data indicate that SARS-CoV-2 is rapidly evolving into more transmissible variants. It is therefore highly possible that SARS-CoV-2 can accumulate adaptive mutations modulating drug susceptibility and hampering viral antigenicity. Thus, it is vital to predict potential non-synonymous mutation sites and predict the evolution of protein structural modifications leading to drug tolerance. As two FDA-approved anti-hepatitis C virus (HCV) drugs, boceprevir, and telaprevir, have been shown to effectively inhibit SARS-CoV-2 by targeting the main protease (Mpro), here we used a high-throughput interface-based protein design strategy to identify mutational hotspots and potential signatures of adaptation in these drug binding sites of Mpro. Several mutants exhibited reduced binding affinity to these drugs, out of which hotspot residues having a strong tendency to undergo positive selection were identified. The data further indicated that these anti-HCV drugs have larger footprints in the mutational landscape of Mpro and hence encompass the highest potential for positive selection and adaptation. These findings are crucial in understanding the potential structural modifications in the drug binding sites of Mpro and thus its signatures of adaptation. Furthermore, the data could provide systemic strategies for robust antiviral design and discovery against COVID-19 in the future.


Assuntos
Adaptação Fisiológica/genética , Antivirais/química , Proteases 3C de Coronavírus/química , Desenho de Fármacos , Farmacorresistência Viral/genética , Mutação , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Sequência de Aminoácidos , Antivirais/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Aptidão Genética/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Ligantes , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Prolina/análogos & derivados , Prolina/química , Prolina/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Seleção Genética/genética , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19
12.
Bioorg Med Chem Lett ; 49: 128267, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271071

RESUMO

In the present study, we newly synthesized four types of novel fullerene derivatives: pyridinium/ethyl ester-type derivatives 3b-3l, pyridinium/carboxylic acid-type derivatives 4a, 4e, 4f, pyridinium/amide-type derivative 5a, and pyridinium/2-morpholinone-type derivative 6a. Among the assessed compounds, cis-3c, cis-3d, trans-3e, trans-3h, cis-3l, cis-4e, cis-4f, trans-4f, and cis-5a were found to inhibit HIV-1 reverse transcriptase (HIV-RT), HIV-1 protease (HIV-PR), and HCV NS5B polymerase (HCV NS5B), with IC50 values observed in the micromolar range. Cellular uptake of pyridinium/ethyl ester-type derivatives was higher than that of corresponding pyridinium/carboxylic acid-type derivatives and pyridinium/amide-type derivatives. This result might indicate that pyridinium/ethyl ester-type derivatives are expected to be lead compounds for multitargeting drugs to treat HIV/HCV coinfection.


Assuntos
Fármacos Anti-HIV/farmacologia , Fulerenos/farmacologia , Inibidores da Protease de HIV/farmacologia , Compostos de Piridínio/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Linhagem Celular Tumoral , Fulerenos/química , Fulerenos/toxicidade , Protease de HIV/metabolismo , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/toxicidade , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Hepacivirus/enzimologia , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Compostos de Piridínio/síntese química , Compostos de Piridínio/toxicidade , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/toxicidade , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 48: 116412, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592636

RESUMO

Peptides can be inhibitors and substrates of proteases. The present study describes the inhibitor- vs. substrate-like properties of peptidic ligands of dengue protease which were designed to provide insight into their binding modes. Of particular interest was the localization of the cleavable peptide bond and the placement of hydrophobic elements in the binding site. The findings provide clues for the design of covalent inhibitors in which electrophilic functional groups bind to the catalytic serine, and in addition for the development of inhibitors that are less basic than the natural substrate and therefore have an improved pharmacokinetic profile. We observed a tendency of basic elements to favor a substrate-like binding mode, whereas hydrophobic elements decrease or eliminate enzymatic cleavage. This indicates a necessity to include basic elements which closely mimic the natural substrates into covalent inhibitors, posing a challenge from the chemical and pharmacokinetic perspective. However, hydrophobic elements may offer opportunities to develop non-covalent inhibitors with a favorable ADME profile and potentially improved target-binding kinetics.


Assuntos
Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Cromatografia Líquida , Relação Dose-Resposta a Droga , HIV/enzimologia , Hepacivirus/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Espectrometria de Massas , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
14.
J Biol Chem ; 294(19): 7573-7587, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30867194

RESUMO

RNA viruses synthesize new genomes in the infected host thanks to dedicated, virally-encoded RNA-dependent RNA polymerases (RdRps). As such, these enzymes are prime targets for antiviral therapy, as has recently been demonstrated for hepatitis C virus (HCV). However, peculiarities in the architecture and dynamics of RdRps raise fundamental questions about access to their active site during RNA polymerization. Here, we used molecular modeling and molecular dynamics simulations, starting from the available crystal structures of HCV NS5B in ternary complex with template-primer duplexes and nucleotides, to address the question of ribonucleotide entry into the active site of viral RdRp. Tracing the possible passage of incoming UTP or GTP through the RdRp-specific entry tunnel, we found two successive checkpoints that regulate nucleotide traffic to the active site. We observed that a magnesium-bound nucleotide first binds next to the tunnel entry, and interactions with the triphosphate moiety orient it such that its base moiety enters first. Dynamics of RdRp motifs F1 + F3 then allow the nucleotide to interrogate the RNA template base prior to nucleotide insertion into the active site. These dynamics are finely regulated by a second magnesium dication, thus coordinating the entry of a magnesium-bound nucleotide with shuttling of the second magnesium necessary for the two-metal ion catalysis. The findings of our work suggest that at least some of these features are general to viral RdRps and provide further details on the original nucleotide selection mechanism operating in RdRps of RNA viruses.


Assuntos
Guanosina Trifosfato/química , Hepacivirus/enzimologia , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/química , Uridina Trifosfato/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Domínio Catalítico , Guanosina Trifosfato/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Uridina Trifosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo
15.
J Hepatol ; 72(3): 441-449, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682879

RESUMO

BACKGROUND & AIMS: Eight-week glecaprevir/pibrentasvir leads to high rates of sustained virological response at post-treatment week 12 (SVR12) across HCV genotypes (GT) 1-6 in treatment-naïve patients without cirrhosis. We evaluated glecaprevir/pibrentasvir once daily for 8 weeks in treatment-naïve patients with compensated cirrhosis. METHODS: EXPEDITION-8 was a single-arm, multicenter, phase IIIb trial. The primary and key secondary efficacy analyses were to compare the lower bound of the 95% CI of the SVR12 rate in i) patients with GT1,2,4-6 in the per protocol (PP) population, ii) patients with GT1,2,4-6 in the intention-to-treat (ITT) population, iii) patients with GT1-6 in the PP population, and iv) patients with GT1-6 in the ITT population, to pre-defined efficacy thresholds based on historical SVR12 rates for 12 weeks of glecaprevir/pibrentasvir in the same populations. Safety was also assessed. RESULTS: A total of 343 patients were enrolled. Most patients were male (63%), white (83%), and had GT1 (67%). The SVR12 rate in patients with GT1-6 was 99.7% (n/N = 334/335; 95%CI 98.3-99.9) in the PP population and 97.7% (n/N = 335/343; 95% CI 96.1-99.3) in the ITT population. All primary and key secondary efficacy analyses were achieved. One patient (GT3a) experienced relapse (0.3%) at post-treatment week 4. Common adverse events (≥5%) were fatigue (9%), pruritus (8%), headache (8%), and nausea (6%). Serious adverse events (none related) occurred in 2% of patients. No adverse event led to study drug discontinuation. Clinically significant laboratory abnormalities were infrequent. CONCLUSIONS: Eight-week glecaprevir/pibrentasvir was well tolerated and led to a similarly high SVR12 rate as the 12-week regimen in treatment-naïve patients with chronic HCV GT1-6 infection and compensated cirrhosis. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03089944. LAY SUMMARY: This study was the first to evaluate an 8-week direct-acting antiviral (DAA) regimen active against all major types of hepatitis C virus (HCV) in untreated patients with compensated cirrhosis. High virological cure rates were achieved with glecaprevir/pibrentasvir across HCV genotypes 1-6, and these high cure rates did not depend on any patient or viral characteristics present before treatment. This may simplify care and allow non-specialist healthcare professionals to treat these patients, contributing to global efforts to eliminate HCV.


Assuntos
Ácidos Aminoisobutíricos/administração & dosagem , Antivirais/administração & dosagem , Benzimidazóis/administração & dosagem , Ciclopropanos/administração & dosagem , Genótipo , Hepacivirus/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Lactamas Macrocíclicas/administração & dosagem , Leucina/análogos & derivados , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Prolina/análogos & derivados , Pirrolidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonamidas/administração & dosagem , Idoso , Ácidos Aminoisobutíricos/efeitos adversos , Antivirais/efeitos adversos , Benzimidazóis/efeitos adversos , Ciclopropanos/efeitos adversos , Combinação de Medicamentos , Feminino , Hepacivirus/enzimologia , Hepatite C Crônica/sangue , Hepatite C Crônica/virologia , Humanos , Lactamas Macrocíclicas/efeitos adversos , Leucina/administração & dosagem , Leucina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Prolina/administração & dosagem , Prolina/efeitos adversos , Pirrolidinas/efeitos adversos , Quinoxalinas/efeitos adversos , RNA Viral/sangue , RNA Viral/genética , Sulfonamidas/efeitos adversos , Resposta Viral Sustentada , Proteínas não Estruturais Virais/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-31818814

RESUMO

The introduction of highly efficient therapies with direct-acting antivirals (DAA) for patients with chronic hepatitis C virus (HCV) infection offers exceptional opportunities to globally control this deadly disease. For achieving this ambitious goal, it is essential to prevent antiviral resistance against the most optimal first-line and retreatment DAA choices. We performed independent comparisons of the efficacy and barrier to resistance of pangenotypic DAA regimens for HCV genotype 2 infections, using previously and newly developed efficient cell culture-adapted strains of subtypes 2a, 2b, and 2c. With the applied experimental cell culture conditions, combination treatment with the sofosbuvir-velpatasvir or glecaprevir-pibrentasvir DAA regimen was efficient in eradicating HCV infections; in contrast, single-drug treatments frequently led to viral escape. Sequence analysis of drug targets from recovered viruses revealed known resistance-associated substitutions (RAS) emerging in the NS3 protease or NS5A after treatment failure. These RAS were genetically stable after viral passage, and viruses with these RAS exhibited significant phenotypic resistance. After sofosbuvir treatment failure, only a genotype 2a virus harbored NS5B RAS S282T and thus had decreased susceptibility to nucleotide analogs (nucs). However, in most cases, viral escape from sofosbuvir led to other NS5B substitutions but drug susceptibility was maintained, and in one case, no changes in NS5B were detected. For a genotype 2b virus, after treatment failure with sofosbuvir-velpatasvir, the efficacy of retreatment with glecaprevir-pibrentasvir was maintained due to the high barrier to resistance and low cross-resistance of pibrentasvir. Our findings suggest the slight superiority of glecaprevir-pibrentasvir against genotype 2b in culture, which could have potential therapeutic interest meriting more definitive investigations in the clinic.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pirrolidinas/farmacologia , Quinoxalinas/farmacologia , Sofosbuvir/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/genética , Linhagem Celular Tumoral , Meios de Cultura/química , Combinação de Medicamentos , Quimioterapia Combinada , Expressão Gênica , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
17.
Gastroenterology ; 157(3): 692-704.e9, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078622

RESUMO

BACKGROUND & AIMS: Sofosbuvir is a frequently used pan-genotype inhibitor of hepatitis C virus (HCV) polymerase. This drug eliminates most chronic HCV infections, and resistance-associated substitutions in the polymerase are rare. However, HCV genotype 3 responds slightly less well to sofosbuvir-based therapies than other genotypes. We collected data from England's National Health Service Early Access Program to search for virus factors associated with sofosbuvir treatment failure. METHODS: We collected patient serum samples and used the capture-fusion assay to assess viral sensitivity to sofosbuvir in 14 HCV genotype 3 samples. We identified polymorphisms associated with reduced response and created modified forms of HCV and replicons containing the substitutions of interest and tested their sensitivity to sofosbuvir and ribavirin. We examined the effects of these polymorphisms by performing logistic regression multivariate analysis on their association with sustained virologic response in a separate cohort of 411 patients with chronic HCV genotype 3 infection who had been treated with sofosbuvir and ribavirin, with or without pegylated interferon. RESULTS: We identified a substitution in the HCV genotype 3a NS5b polymerase at amino acid 150 (alanine [A] to valine [V]), V at position 150 was observed in 42% of patients) with a reduced response to sofosbuvir in virus replication assays. In patients treated with sofosbuvir-containing regimens, the A150V variant was associated with a reduced response to treatment with sofosbuvir and ribavirin, with or without pegylated interferon. In 326 patients with V at position 150, 71% achieved an sustained virologic response compared to 88% with A at position 150. In cells, V at position 150 reduced the response to sofosbuvir 7-fold. We found that another rare substitution, glutamic acid (E) at position 206, significantly reduced the response to sofosbuvir (8.34-fold reduction); the combinations of V at position 150 and E at position 206 reduced the virus response to sofosbuvir 35.77-fold. Additionally, in a single patient, we identified 5 rare polymorphisms that reduced sensitivity to sofosbuvir our cell system. CONCLUSIONS: A common polymorphism, V at position 150 in the HCV genotype 3a NS5b polymerase, combined with other variants, reduces the virus response to sofosbuvir. Clinically, infection with HCV genotype 3 containing this variant reduces odds of sustained virologic response. In addition, we identified rare combinations of variants in HCV genotype 3 that reduce response to sofosbuvir.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Mutação , Polimorfismo Genético , Sofosbuvir/uso terapêutico , Proteínas não Estruturais Virais/antagonistas & inibidores , Substituição de Aminoácidos , Antivirais/efeitos adversos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Quimioterapia Combinada , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/virologia , Humanos , Fenótipo , Sofosbuvir/efeitos adversos , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
J Comput Chem ; 41(20): 1820-1834, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32449536

RESUMO

Hepatitis C virus (HCV) is one of the major causes of liver disease affecting an estimated 170 million people culminating in 300,000 deaths from cirrhosis or liver cancer. NS5B is one of three potential therapeutic targets against HCV (i.e., the other two being NS3/4A and NS5A) that is central to viral replication. In this study, we developed a classification structure-activity relationship (CSAR) model for identifying substructures giving rise to anti-HCV activities among a set of 578 non-redundant compounds. NS5B inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 independent data splits using the random forest algorithm. The modelability (MODI index) of the data set was determined to be robust with a value of 0.88 exceeding established threshold of 0.65. The predictive performance was deduced by the accuracy, sensitivity, specificity, and Matthews correlation coefficient, which was found to be statistically robust (i.e., the former three parameters afforded values in excess of 0.8 while the latter statistical parameter provided a value >0.7). An in-depth analysis of the top 20 important descriptors revealed that aromatic ring and alkyl side chains are important for NS5B inhibition. Finally, the predictive model is deployed as a publicly accessible HCVpred web server (available at http://codes.bio/hcvpred/) that would allow users to predict the biological activity as being active or inactive against HCV NS5B. Thus, the knowledge and web server presented herein can be used in the design of more potent and specific drugs against the HCV NS5B.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Hepacivirus/enzimologia , Modelos Moleculares , Análise Multivariada , Inibidores de Proteases/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
19.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315989

RESUMO

Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


Assuntos
Hepacivirus/enzimologia , Hepacivirus/crescimento & desenvolvimento , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Iniciação da Transcrição Genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Humanos
20.
Chemistry ; 26(1): 49-88, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483909

RESUMO

Drugs in the chemical space beyond the rule of 5 (bRo5) can modulate targets with difficult binding sites while retaining cell permeability and oral absorption. Reviewing the syntheses of bRo5 drugs approved since 1990 highlights synthetic chemistry's contribution to drug discovery in this space. Initially, bRo5 drugs were mainly natural products and semi-synthetic derivatives. Later, peptidomimetics and de novo designed compounds, that include up to seven chiral centres and macrocyclic rings became dominant. These drugs are prepared by total synthesis, sometimes by routes of more than 25 steps with stereocentres originating from the chiral pool, or being installed by chiral induction or enzymatic resolution. Interestingly, ring-closing metathesis proved to be the method of choice for macrocyclisation in hepatitis C virus protease inhibitors. We conclude that structural simplification, planning of synthetic routes regarding incorporation of stereocentres and macrocyclisation, as well as incorporation of structural knowledge and consideration of chameleonic properties in design, should facilitate drug discovery in bRo5 space.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/síntese química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Hepacivirus/enzimologia , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Peptidomiméticos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA