RESUMO
Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.
Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxigênio/metabolismo , Transcriptoma/genética , Hipóxia Celular , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Hipóxia/metabolismo , Células K562 , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.
Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise/genética , Fosforilação Oxidativa , Via de Pentose Fosfato/fisiologia , Células Th17/metabolismo , Animais , Hipóxia Celular/genética , Hipóxia Celular/imunologia , Quimera/genética , Cromatografia Gasosa , Cromatografia Líquida , Infecções por Clostridium/imunologia , Citocinas/deficiência , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Glucose-6-Fosfato Isomerase/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise/imunologia , Homeostase/genética , Homeostase/imunologia , Inflamação/genética , Inflamação/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/imunologia , RNA-Seq , Análise de Célula Única , Células Th17/imunologia , Células Th17/patologiaRESUMO
Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.
Assuntos
Adenina/análogos & derivados , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/patologia , Adenina/análise , Adenina/química , Adulto , Idoso , Homólogo AlkB 1 da Histona H2a Dioxigenase/antagonistas & inibidores , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Hipóxia Celular , Criança , Epigenômica , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.
Assuntos
Hipóxia Celular , Relógios Circadianos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos Dicarboxílicos/farmacologia , Animais , Proteínas CLOCK/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Meios de Cultura/química , Fatores de Iniciação em Eucariotos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/genéticaRESUMO
Molecular oxygen (O2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress.
Assuntos
Hipóxia Celular/genética , Metabolismo Energético/genética , Estresse Oxidativo/genética , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genéticaRESUMO
The 2016 Albert Lasker Basic Medical Research Award is being awarded to Gregg Semenza, William Kaelin, and Peter Ratcliffe for discovery of the pathway by which human and animal cells sense and adapt to changes in oxygen availability-an essential requirement for survival. Bill and Peter joined Cell editor João Monteiro in an informal conversation about science, medicine, designing experiments, and training the next generation.
Assuntos
Distinções e Prêmios , Hipóxia Celular , Oxigênio/metabolismo , Animais , HumanosRESUMO
This year's Lasker Basic Medical Research Award is shared by William Kaelin, Peter Ratcliffe, and Gregg Semenza for discovery of the pathway by which animal cells sense and adapt to changes in oxygen availability, which plays an essential role in adaptation to a wide variety of physiologic and pathologic conditions.
Assuntos
Adaptação Fisiológica , Distinções e Prêmios , Pesquisa Biomédica , Hipóxia Celular , Oxigênio/metabolismo , Anaerobiose , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismoRESUMO
The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.
Assuntos
Vasos Sanguíneos/metabolismo , Macrófagos/metabolismo , Nervos Periféricos/fisiologia , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Regeneração , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Organisms must be able to respond to low oxygen in a number of homeostatic and pathological contexts. Regulation of hypoxic responses via the hypoxia-inducible factor (HIF) is well established, but evidence indicates that other, HIF-independent mechanisms are also involved. Here, we report a hypoxic response that depends on the accumulation of lactate, a metabolite whose production increases in hypoxic conditions. We find that the NDRG3 protein is degraded in a PHD2/VHL-dependent manner in normoxia but is protected from destruction by binding to lactate that accumulates under hypoxia. The stabilized NDRG3 protein binds c-Raf to mediate hypoxia-induced activation of Raf-ERK pathway, promoting angiogenesis and cell growth. Inhibiting cellular lactate production abolishes the NDRG3-mediated hypoxia responses. Our study, therefore, elucidates the molecular basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases.
Assuntos
Hipóxia/metabolismo , Ácido Láctico/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oxigênio/metabolismo , Ligação Proteica , Quinases raf/metabolismoRESUMO
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFß pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Genoma Humano , Transcriptoma , Feminino , Humanos , Masculino , Hipóxia Celular , Estudos de Coortes , Neoplasias Colorretais/classificação , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Variações do Número de Cópias de DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Genoma Humano/genética , Instabilidade de Microssatélites , Mutação , Medicina de Precisão , Prognóstico , Células Estromais/metabolismo , Células Estromais/patologia , Análise de Sobrevida , Fatores de Tempo , Transcriptoma/genética , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genéticaRESUMO
Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger HIF-1α induction, setting off the chronic adipose tissue inflammatory response characteristic of obesity. At the molecular level, these events involve saturated fatty acid stimulation of the adenine nucleotide translocase 2 (ANT2), an inner mitochondrial membrane protein, which leads to the uncoupled respiratory state. Genetic or pharmacologic inhibition of either ANT2 or HIF-1α can prevent or reverse these pathophysiologic events, restoring a state of insulin sensitivity and glucose tolerance. These results reveal the sequential series of events in obesity-induced inflammation and insulin resistance.
Assuntos
Adipócitos/metabolismo , Dieta Hiperlipídica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Oxigênio/metabolismo , Translocador 2 do Nucleotídeo Adenina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Ácidos Graxos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismoRESUMO
Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.
Assuntos
Adaptação Fisiológica , Hipóxia Celular , Condrócitos , Hemoglobinas , Humanos , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Morte Celular , Hipóxia Celular/fisiologia , Condrócitos/metabolismo , Citoplasma/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Eritrócitos/metabolismo , Glicólise , Hemoglobinas/deficiência , Hemoglobinas/genética , Hemoglobinas/metabolismo , Oxigênio/metabolismoRESUMO
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
Assuntos
Reprogramação Celular , Ácidos Graxos , Coração , Regeneração , Animais , Camundongos , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Hipóxia Celular , Proliferação de Células , Metabolismo Energético , Ativação Enzimática , Epigênese Genética , Ácidos Graxos/metabolismo , Coração/fisiologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Regeneração/fisiologia , Traumatismo por Reperfusão , Transcrição GênicaRESUMO
Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.
Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismoRESUMO
Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.
Assuntos
Receptor de Proteína C Endotelial , Fáscia , Cicatrização , Animais , Camundongos , Diferenciação Celular , Hipóxia Celular , Linhagem da Célula , Modelos Animais de Doenças , Receptor de Proteína C Endotelial/metabolismo , Fáscia/citologia , Fáscia/lesões , Fáscia/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais , Análise da Expressão Gênica de Célula Única , Pele/citologia , Pele/lesões , Pele/metabolismo , Tretinoína/metabolismoRESUMO
Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Senescência Celular , Hipóxia/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Fatores Etários , Animais , Antibióticos Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hidroxibenzoatos/farmacologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , Força Muscular , NF-kappa B/metabolismo , Comunicação Parácrina , Fenótipo , Transdução de SinaisRESUMO
Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.
Assuntos
Inflamação , Doenças Metabólicas/fisiopatologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiopatologia , Hipóxia Celular , Doença Crônica , Exossomos/metabolismo , Humanos , Imunomodulação , Doenças Metabólicas/etiologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapiaRESUMO
Reactive oxygen species (ROS) produced by NADPH1 oxidase 1 (NOX1) are thought to drive spermatogonial stem cell (SSC) self-renewal through feed-forward production of ROS by the ROS-BCL6B-NOX1 pathway. Here we report the critical role of oxygen on ROS-induced self-renewal. Cultured SSCs proliferated poorly and lacked BCL6B expression under hypoxia despite increase in mitochondria-derived ROS. Due to lack of ROS amplification under hypoxia, NOX1-derived ROS were significantly reduced, and Nox1-deficient SSCs proliferated poorly under hypoxia but normally under normoxia. NOX1-derived ROS also influenced hypoxic response in vivo because Nox1-deficient undifferentiated spermatogonia showed significantly reduced expression of HIF1A, a master transcription factor for hypoxic response. Hypoxia-induced poor proliferation occurred despite activation of MYC and suppression of CDKN1A by HIF1A, whose deficiency exacerbated self-renewal efficiency. Impaired proliferation of Nox1- or Hif1a-deficient SSCs under hypoxia was rescued by Cdkn1a depletion. Consistent with these observations, Cdkn1a-deficient SSCs proliferated actively only under hypoxia but not under normoxia. On the other hand, chemical suppression of mitochondria-derived ROS or Top1mt mitochondria-specific topoisomerase deficiency did not influence SSC fate, suggesting that NOX1-derived ROS play a more important role in SSCs than mitochondria-derived ROS. These results underscore the importance of ROS origin and oxygen tension on SSC self-renewal.
Assuntos
Células-Tronco Germinativas Adultas/citologia , Hipóxia Celular/fisiologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Divisão Celular/genética , Proliferação de Células/genética , Células Cultivadas , DNA Topoisomerases Tipo I/genética , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , NADPH Oxidase 1/metabolismoRESUMO
Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.
Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , NADRESUMO
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.