Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 84: 13-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796054

RESUMO

Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in Escherichia coli W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W-H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W-H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.


Assuntos
Acetatos , Escherichia coli , Homosserina , Engenharia Metabólica , Treonina , Escherichia coli/genética , Escherichia coli/metabolismo , Treonina/biossíntese , Treonina/metabolismo , Treonina/genética , Acetatos/metabolismo , Homosserina/metabolismo , Homosserina/análogos & derivados , Homosserina/genética , Homosserina/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Metab Eng ; 73: 270-279, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961600

RESUMO

L-Homoserine is a valuable amino acid as a platform chemical in the synthesis of various important compounds. Development of microbial strains for high-level L-homoserine production is an attractive research direction in recent years. Herein, we converted a wild-type Escherichia coli to a non-auxotrophic and plasmid-free hyperproducer of L-homoserine using systematically metabolic engineer strategies. First, an initial strain was obtained through regulating L-homoserine degradation pathway and enhancing synthetic flow. To facilitate L-homoserine production, flux-control genes were tuned by optimizing the copy numbers in chromosome, and transport system was modified to promote L-homoserine efflux. Subsequently, a strategy of cofactors synergistic utilization was proposed and successfully applied to achieve L-homoserine hyperproduction. The final engineered strain could efficiently produce 85.29 g/L L-homoserine, which was the highest production level ever reported from a plasmid-free, antibiotic-free, inducer-free and nonauxotrophic strain. These strategies used here can be considered for developing microbial cell factory of other L-aspartate derivatives.


Assuntos
Proteínas de Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Homosserina/genética , Homosserina/metabolismo , Plasmídeos/genética
3.
Mol Syst Biol ; 16(7): e9618, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672881

RESUMO

The engineering of advanced multicellular behaviors, such as the programmed growth of biofilms or tissues, requires cells to communicate multiple aspects of physiological information. Unfortunately, few cell-cell communication systems have been developed for synthetic biology. Here, we engineer a genetically encoded channel selector device that enables a single communication system to transmit two separate intercellular conversations. Our design comprises multiplexer and demultiplexer sub-circuits constructed from a total of 12 CRISPRi-based transcriptional logic gates, an acyl homoserine lactone-based communication module, and three inducible promoters that enable small molecule control over the conversations. Experimentally parameterized mathematical models of the sub-components predict the steady state and dynamical performance of the full system. Multiplexed cell-cell communication has applications in synthetic development, metabolic engineering, and other areas requiring the coordination of multiple pathways among a community of cells.


Assuntos
Sistemas CRISPR-Cas , Comunicação Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Metabólica/métodos , Percepção de Quorum/genética , Biologia Sintética/métodos , Escherichia coli/metabolismo , Homosserina/genética , Homosserina/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , Proteínas Recombinantes , Bibliotecas de Moléculas Pequenas
4.
Nucleic Acids Res ; 47(6): 3171-3183, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649554

RESUMO

Bacteria use quorum sensing to monitor cell density and coordinate group behaviours. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, quorum sensing is connected to virulence gene expression via the two autoinducer molecules, AI-2 and CAI-1. Both autoinducers share one signal transduction pathway to control the production of AphA, a key transcriptional activator of biofilm formation and virulence genes. In this study, we demonstrate that the recently identified autoinducer, DPO, also controls AphA production in V. cholerae. DPO, functioning through the transcription factor VqmA and the VqmR small RNA, reduces AphA levels at the post-transcriptional level and consequently inhibits virulence gene expression. VqmR-mediated repression of AphA provides an important link between the AI-2/CAI-1 and DPO-dependent quorum sensing pathways in V. cholerae. Transcriptome analyses comparing the effect of single autoinducers versus autoinducer combinations show that quorum sensing controls the expression of ∼400 genes in V. cholerae and that all three autoinducers are required for a full quorum sensing response. Together, our data provide a global view on autoinducer interplay in V. cholerae and highlight the importance of RNA-based gene control for collective functions in this major human pathogen.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Homosserina/análogos & derivados , Cetonas , Vibrio cholerae/genética , Virulência/genética , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Homosserina/genética , Lactonas , Regiões Promotoras Genéticas , Percepção de Quorum/genética , Transdução de Sinais/genética , Vibrio cholerae/patogenicidade
5.
Biotechnol Lett ; 43(1): 105-117, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33083859

RESUMO

OBJECTIVE: O-acetylhomoserine (OAH) is an important platform chemical to produce high-valuable chemicals. To improve the production of O-acetylhomoserine from glycerol, the glycerol-oxidative pathway was investigated and the optimization of fermentation with crude glycerol was carried out. RESULTS: The glycerol-uptake system and glycerol-oxidative pathway were modified and O-acetyltransferase from Corynebacterium glutamicum was introduced into the engineered strain to produce O-acetylhomoserine. It was found that overexpression of glycerol 3-phosphate dehydrogenase improved the OAH production to 6.79 and 4.21 g/L from pure and crude glycerol, respectively. And the higher OAH production depending on higher level of transcription of glpD. Two-step statistical approach was employed to optimize the fermentation conditions. The significant effects of glycerol, ammonium chloride and yeast extract were screened applying Plackett-Burman design and were optimized further by employing the Response Surface Methodology. Under optimized conditions, the OAH production was up to 9.42 and 7.01 g/L when pure and crude glycerol were used in shake flask cultivations, respectively. CONCLUSIONS: The enzymatic step catalyzing the oxidation of glycerol through GlpD was the key step for OAH production, which served the foundation for realization of a consistent OAH production from crude glycerol in the future.


Assuntos
Escherichia coli , Glicerol/metabolismo , Homosserina , Engenharia Metabólica/métodos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação/genética , Homosserina/análogos & derivados , Homosserina/análise , Homosserina/genética , Homosserina/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução
6.
Fish Shellfish Immunol ; 99: 274-283, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058098

RESUMO

luxS-mediated autoinducer 2 (AI-2)-dependent quorum sensing (QS) has been demonstrated to affect many bacterial phenotypes, including virulence. Streptococcus agalactiae harbors a functional luxS gene required for the biosynthesis of AI-2. In this study, we investigated the regulation effect and mechanism of the luxS/AI-2 QS system in the pathogenicity of the piscine S. agalactiae strain GD201008-001. We found that inactivation of luxS caused a marked decrease in biofilm formation, hemolytic activity, antiphagocytosis and intracellular survival of S. agalactiae. Except for hemolytic activity, the altered phenotypes due to the luxS deletion were AI-2-independent. Further investigation indicated that high levels of the proinflammatory cytokines IL-1ß and IL-6 could be induced in macrophages co-incubated with the luxS deletion mutant and synthetic AI-2, single or combined. Also, the results of tilapia infection showed that inactivation of luxS significantly decreased the virulence of S. agalactiae but upregulated the expression of cytokines in spleens and brains. Increased proinflammatory effects of the luxS mutant were restored in the luxS complemented strain but could not be restored by AI-2 addition. All the findings suggest that luxS is involved in virulence-associated phenotypes and immunological evasion of S. agalactiae, and furthermore, this involvement is mostly AI-2-independent. This study will provide valuable insights into our understanding of the role of the LuxS/AI-2 QS system in the pathogenesis of S. agalactiae.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Animais , Proteínas de Bactérias/genética , Biofilmes , Liases de Carbono-Enxofre/genética , Sobrevivência Celular , Ciclídeos , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/microbiologia , Deleção de Genes , Regulação da Expressão Gênica , Homosserina/genética , Homosserina/metabolismo , Camundongos , Mutação , Células RAW 264.7 , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Virulência
7.
Appl Microbiol Biotechnol ; 104(16): 7177-7185, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32621125

RESUMO

Root colonization of beneficial rhizobacteria is critical for their beneficial effects. Quorum sensing (QS) has been reported to affect the colonization of many plant pathogens. However, how QS signals regulate root colonization of beneficial rhizobacteria is unclear. In this study, the QS signal AI-2 synthetase-encoding gene luxS was completely deleted from the genome of the plant beneficial rhizobacterium Bacillus velezensis SQR9, and bioluminescence experiments showed that AI-2 production was blocked. Deletion of luxS reduced biofilm formation, motility, and root colonization of B. velezensis SQR9, while addition of exogenous AI-2 to the mutant restored this phenomenon. These results indicated that AI-2 positively affects the root colonization of B. velezensis SQR9. This study provided new insights for enhancing the colonization of beneficial rhizobacteria. KEY POINTS: • LuxS participated in the synthesis of the quorum sensing signal AI-2 in B. velezensis. • AI-2 enhanced motility, biofilm formation, and root colonization of B. velezensis. • AI-2 stimulated the production of γ-polyglutamic acid by B. velezensis.


Assuntos
Bacillus/genética , Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Homosserina/análogos & derivados , Raízes de Plantas/microbiologia , Percepção de Quorum , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homosserina/genética , Lactonas , Medições Luminescentes , Movimento
8.
Vet Res ; 50(1): 109, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831050

RESUMO

The function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Doenças das Aves Domésticas/microbiologia , Percepção de Quorum , Animais , Biofilmes , Proteínas de Transporte/genética , China/epidemiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Homosserina/genética , Homosserina/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Sorogrupo
9.
J Fish Dis ; 42(4): 489-495, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742313

RESUMO

The link between quorum sensing in Vibrio campbellii and its virulence towards tiger grouper (Epinephelus fuscoguttatus) was investigated using V. campbellii wild type and quorum-sensing mutants with inactive quorum sensing or constitutively maximal quorum-sensing activity, and signal molecule synthase mutants. The results showed that wild-type V. campbellii is pathogenic to grouper larvae, causing more than 50% mortality after 4 days of challenge. Furthermore, the mortality of larvae challenged with the mutant with maximally active quorum sensing was significantly higher than that of larvae challenged with the wild type, whereas a higher survival was observed in the larvae challenged to the mutant with a completely inactive quorum-sensing system. Grouper larvae challenged with either the signal molecule synthase triple mutant, the harveyi autoinducer-1 (HAI-1) synthase mutant and the autoinducer-2 (AI-2) synthase mutant showed higher survival than larvae challenged with the wild type. In contrast, larvae challenged with the cholerae autoinducer-1 (CAI-1) synthase mutant showed high mortality. This indicates that HAI-1 and AI-2, but not CAI-1, are required for full virulence of V. campbellii towards grouper larvae. Our data suggest that quorum-sensing inhibition could be an effective strategy to control V. campbellii infections in tiger grouper.


Assuntos
Bass/microbiologia , Doenças dos Peixes/microbiologia , Percepção de Quorum , Vibrio/metabolismo , Vibrio/patogenicidade , 4-Butirolactona/análogos & derivados , 4-Butirolactona/genética , Animais , Homosserina/análogos & derivados , Homosserina/genética , Lactonas , Larva/microbiologia , Mutação , Vibrio/genética , Virulência
10.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249749

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is an extremely common human pathobiont that persists on the airway mucosal surface within biofilm communities, and our previous work has shown that NTHi biofilm maturation is coordinated by the production and uptake of autoinducer 2 (AI-2) quorum signals. To directly test roles for AI-2 in maturation and maintenance of NTHi biofilms, we generated an NTHi 86-028NP mutant in which luxS transcription was under the control of the xylA promoter (NTHi 86-028NP luxS xylA::luxS), rendering AI-2 production inducible by xylose. Comparison of biofilms under inducing and noninducing conditions revealed a biofilm defect in the absence of xylose, whereas biofilm maturation increased following xylose induction. The removal of xylose resulted in the interruption of luxS expression and biofilm dispersal. Measurement of luxS transcript levels by real-time reverse transcription-PCR (RT-PCR) showed that luxS expression peaked as biofilms matured and waned before dispersal. Transcript profiling revealed significant changes following the induction of luxS, including increased transcript levels for a predicted family 8 glycosyltransferase (NTHI1750; designated gstA); this result was confirmed by real-time RT-PCR. An isogenic NTHi 86-028NP gstA mutant had a biofilm defect, including decreased levels of sialylated matrix and significantly altered biofilm structure. In experimental chinchilla infections, we observed a significant decrease in the number of bacteria in the biofilm population (but not in effusions) for NTHi 86-028NP gstA compared to the parental strain. Therefore, we conclude that AI-2 promotes NTHi biofilm maturation and the maintenance of biofilm integrity, due at least in part to the expression of a probable glycosyltransferase that is potentially involved in the synthesis of the biofilm matrix.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Glicosiltransferases/metabolismo , Haemophilus influenzae/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Animais , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Proteínas de Transporte/genética , Chinchila/microbiologia , Perfilação da Expressão Gênica , Glicosiltransferases/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Homosserina/genética , Homosserina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Otite Média/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Xilose/metabolismo
11.
Appl Microbiol Biotechnol ; 102(17): 7231-7238, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29938319

RESUMO

Quorum sensing (QS) is an important protective mechanism that allows bacteria to adapt to its environment. A limited number of signal molecules play the key role of transmitting information in this mechanism. Signals are transmitted between individual bacterium through QS systems, resulting in the expression of specific genes. QS plays an important role in a variety of bacterial processes, including drug resistance, biofilm formation, motility, adherence, and virulence. Most Gram-positive and Gram-negative bacteria possess QS systems, mainly the LuxS/AI-2-mediated QS system. Evidence has been brought that LuxS/AI-2 system controls major virulence determinants in Streptococcus suis and, as such, the ability of this bacterial species to cause infections in humans and pigs. Understanding the S. suis LuxS/AI-2 system may open up novel avenues for decreasing the drug resistance and infectivity of S. suis. This article focuses on the progress made to date on the S. suis LuxS/AI-2-mediated QS system.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Percepção de Quorum , Transdução de Sinais , Streptococcus suis/metabolismo , Adaptação Fisiológica , Animais , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Regulação Bacteriana da Expressão Gênica , Homosserina/genética , Homosserina/metabolismo , Humanos , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/patogenicidade , Streptococcus suis/fisiologia , Virulência/genética
12.
Mol Syst Biol ; 12(1): 849, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26814193

RESUMO

Bidirectional intercellular signaling is an essential feature of multicellular organisms, and the engineering of complex biological systems will require multiple pathways for intercellular signaling with minimal crosstalk. Natural quorum-sensing systems provide components for cell communication, but their use is often constrained by signal crosstalk. We have established new orthogonal systems for cell-cell communication using acyl homoserine lactone signaling systems. Quantitative measurements in contexts of differing receiver protein expression allowed us to separate different types of crosstalk between 3-oxo-C6- and 3-oxo-C12-homoserine lactones, cognate receiver proteins, and DNA promoters. Mutating promoter sequences minimized interactions with heterologous receiver proteins. We used experimental data to parameterize a computational model for signal crosstalk and to estimate the effect of receiver protein levels on signal crosstalk. We used this model to predict optimal expression levels for receiver proteins, to create an effective two-channel cell communication device. Establishment of a novel spatial assay allowed measurement of interactions between geometrically constrained cell populations via these diffusible signals. We built relay devices capable of long-range signal propagation mediated by cycles of signal induction, communication and response by discrete cell populations. This work demonstrates the ability to systematically reduce crosstalk within intercellular signaling systems and to use these systems to engineer complex spatiotemporal patterning in cell populations.


Assuntos
4-Butirolactona/análogos & derivados , Comunicação Celular/genética , Transdução de Sinais/genética , Biologia de Sistemas , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Homosserina/análogos & derivados , Homosserina/genética , Homosserina/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas , Percepção de Quorum/genética
13.
BMC Microbiol ; 17(1): 198, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927379

RESUMO

BACKGROUND: Autoinducer-2 (AI-2) is a universal signal molecule and enables an individual bacteria to communicate with each other and ultimately control behaviors of the population. Harnessing the character of AI-2, two kinds of AI-2 "controller cells" ("consumer cells" and "supplier cells") were designed to "reprogram" the behaviors of entire population. RESULTS: For the consumer cells, genes associated with the uptake and processing of AI-2, which includes LsrACDB, LsrFG, LsrK, were overexpressed in varying combinations. Four consumer cell strains were constructed: Escherichia coli MG1655 pLsrACDB (NK-C1), MG1655 pLsrACDBK (NK-C2), MG1655 pLsrACDBFG (NK-C3) and MG1655 pLsrACDBFGK (NK-C4). The key enzymes responsible for production of AI-2, LuxS and Mtn, were also overexpressed, yielding strains MG1655 pLuxS (NK-SU1), and MG1655 pLuxS-Mtn (NK-SU2). All the consumer cells could decrease the environmental AI-2 concentration. NK-C2 and NK-C4 were most effective in AI-2 uptake and inhibited biofilm formation. While suppliers can increase the environmental AI-2 concentration and NK-SU2 was most effective in supplying AI-2 and facilitated biofilm formation. Further, reporter strain, MG1655 pLGFP was constructed. The expression of green fluorescent protein (GFP) in reporter cells was initiated and guided by AI-2. Mixture of consumer cells and reporter cells suggest that consumer cells can decrease the AI-2 concentration. And the supplier cells were co-cultured with reporter cells, indicating that supplier cells can provide more AI-2 compared to the control. CONCLUSIONS: The consumer cells and supplier cells could be used to regulate environmental AI-2 concentration and the biofilm formation. They can also modulate the AI-2 concentration when they were co-cultured with reporter cells. It can be envisioned that this system will become useful tools in synthetic biology and researching new antimicrobials.


Assuntos
Bactérias/metabolismo , Escherichia coli/fisiologia , Homosserina/análogos & derivados , Lactonas/metabolismo , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Homosserina/análise , Homosserina/genética , Homosserina/metabolismo , Lactonas/análise
14.
Microb Pathog ; 113: 321-329, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29111323

RESUMO

The LuxS/AI-2 quorum sensing mechanism can regulate the physiological functions of avian pathogenic Escherichia coli (APEC) through internalization of the small molecule autoinducer-2 (AI-2). The ptsI gene encodes enzyme I, which participates in the phosphotransferase system (PTS) that regulates the virulence and AI-2 internalization of bacteria. The aim of the present study was to determine the effect of ptsI on AI-2 internalization and other pathogenesis process in APEC using a ptsI mutant of the APEC strain DE17 (serotype O2), namely DE17ΔptsI. The results showed that deletion of the ptsI gene changed the rdar (red dry and rough) morphotype and decreased motility and biofilm formation in APEC (p < 0.05). Furthermore, scanning electron microscopy showed that the biofilm structure of DE17ΔptsI became sparse and more extracellular, as compared with the wild-type strain DE17. Moreover, AI-2 assay showed that AI-2 was internalized by DE17ΔptsI, while the recombinant PtsI protein had no AI-2 binding activity. Furthermore, deletion of the ptsI gene in APEC significantly increased adherence to DF-1 cells (p < 0.05). The 50% lethal dose of DE17ΔptsI was decreased by 17.8-fold and the bacterial loads of DE17ΔptsI were decreased by 13600-, 68.5-, 131-, and 3600-fold in the blood, liver, spleen, and kidney, respectively, as compared to the DE17. Moreover, histopathological analysis showed that the mutant DE17ΔptsI was associated with reduced pathological changes in the heart, liver, spleen, and kidney of ducklings, respectively, as compared to the wild-type strain DE17. The results of this study will benefit further studies on the functions of the ptsI in APEC.


Assuntos
Doenças das Aves/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/patogenicidade , Homosserina/análogos & derivados , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/fisiologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/fisiologia , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre , Linhagem Celular , China , Modelos Animais de Doenças , Patos , Escherichia coli/genética , Infecções por Escherichia coli/patologia , Deleção de Genes , Perfilação da Expressão Gênica , Coração/microbiologia , Homosserina/genética , Homosserina/fisiologia , Rim/microbiologia , Rim/patologia , Lactonas , Fígado/microbiologia , Fígado/patologia , Miocárdio/patologia , Fosfotransferases , Percepção de Quorum , Baço/microbiologia , Baço/patologia , Fatores de Virulência/genética
15.
Genet Mol Res ; 14(2): 4068-84, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25966179

RESUMO

Salmonella spp are among the main causative agents of foodborne diseases. Some phenotypes associated with increased drug resistance and virulence are regulated by quorum sensing (QS). In the present study, the autoinducer (AI)-1- and -2-mediated QS mechanisms were characterized in Salmonella enterica serovar Enteritidis PT4 for the first time. Salmonella Enteritidis did not produce AI-1. Phylogenetic analysis of nucleotides encoding the SdiA protein, the response regulator of AI-1-mediated QS, and comparative alignment of its amino acids showed that the gene and protein are conserved within the same bacterial genus. Thus, bacteria of the same genus respond to the same AIs. However, this finding did not preclude the possibility that Salmonella Enteritidis might respond to AIs released from bacteria of a different genus, which might confer a competitive advantage to this pathogen. We found that the regulation of AI-2-mediated QS in Salmonella Enteritidis is similar to that in serovar Typhimurium. The elucidation of the AI-1- and AI-2-mediated QS mechanisms in Salmonella Enteritidis will contribute to the development of new control strategies for this pathogen by indicating new targets for antimicrobial drugs.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/genética , Homosserina/análogos & derivados , Percepção de Quorum/fisiologia , Salmonella enteritidis/fisiologia , Transativadores/genética , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Homosserina/genética , Homosserina/metabolismo , Lactonas/metabolismo , Modelos Biológicos , Filogenia , Salmonella enteritidis/genética , Transativadores/metabolismo , Virulência
16.
J Biol Chem ; 288(22): 15878-87, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589368

RESUMO

Quorum-sensing systems are widely used by bacteria to control behavior in response to fluctuations in cell density. Several small diffusible molecules called autoinducers act as signaling molecules in quorum-sensing processes through interplay with sensors. Autoinducers modulate vital physiological functions such as nutrient acquisition, gene transcription, and virulence factor production. In Escherichia coli, LsrR serves as a global transcription regulator that responds to autoinducer-2 to regulate the expression of a variety of genes, including the lsr operon and the lsrR gene. Here, we report the crystal structure of full-length LsrR from E. coli, which has an N-terminal DNA-binding domain and a C-terminal ligand-binding domain connected by a ß-strand. Although only two molecules are found in one asymmetric unit, two neighboring dimers pack to form a tetramer that is consistent with the oligomerization state of LsrR in solution. Mutagenesis experiments and gel shift assays indicated that Gln-33 and Tyr-26 might be involved in interactions between LsrR and DNA. The LsrR-binding site for phosphorylated autoinducer-2 was predicted by structural comparisons of LsrR with CggR and SorC. Cross-linking, size exclusion chromatography, and gel shift assays determined that phosphorylated autoinducer-2 triggered the disassembly of the LsrR tetramer into dimers and reduced the DNA binding ability of LsrR. Our findings reveal a mechanism for the change in the oligomerization state of LsrR in the presence of phosphorylated autoinducer-2. Based on these observations, we propose that phosphorylated autoinducer-2 triggers the disassembly of the LsrR tetramer to activate the transcription of its target genes.


Assuntos
DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Homosserina/análogos & derivados , Lactonas/química , Multimerização Proteica/fisiologia , Proteínas Repressoras/química , Transcrição Gênica/fisiologia , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Homosserina/química , Homosserina/genética , Homosserina/metabolismo , Lactonas/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
17.
Mol Syst Biol ; 9: 636, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340842

RESUMO

Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Escherichia coli/genética , Neoplasias de Cabeça e Pescoço/genética , Homosserina/análogos & derivados , Lactonas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Engenharia Genética/métodos , Neoplasias de Cabeça e Pescoço/patologia , Homosserina/genética , Homosserina/metabolismo , Humanos , Nanotecnologia , Percepção de Quorum
18.
Vet Microbiol ; 288: 109943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113574

RESUMO

O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Camundongos , Células Endoteliais , Homosserina/genética , Sorogrupo , Infecções Estreptocócicas/veterinária , Suínos , Doenças dos Suínos/metabolismo , Virulência
19.
J Biol Chem ; 287(43): 36111-22, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22942290

RESUMO

Numerous studies have claimed deleterious effects of LuxS mutation on many bacterial phenotypes, including bacterial biofilm formation. Genetic complementation mostly restored the observed mutant phenotypes to WT levels, leading to the postulation that quorum sensing via a family of molecules generically termed autoinducer-2 (AI-2) is essential for many phenotypes. Because LuxS mutation has dual effects, this hypothesis needs to be investigated into the details for each bacterial species. In this study we used S. sanguinis SK36 as a model biofilm bacterium and employed physiological characterization and transcriptome approaches on WT and luxS-deficient strains, in combination with chemical, luxS, and sahH complementation experiments. SahH enables a direct conversion of SAH to homocysteine and thereby restores the activated methionine cycle in a luxS-negative background without formation of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione. With this strategy we were able to dissect the individual contribution of LuxS and AI-2 activity in detail. Our data revealed that S. sanguinis biofilm formation is independent from AI-2 substance pools and is rather supported by an intact activated methyl cycle. Of 216 differentially transcribed genes in the luxS mutant, 209 were restored by complementation with a gene encoding the S-adenosylhomocysteine hydrolase. Only nine genes, mainly involved in natural competence, were directly affected by the AI-2 quorum-sensing substance pool. Cumulatively, this suggested that biofilm formation in S. sanguinis is not under control of AI-2. Our study suggests that previously evaluated LuxS mutants in other species need to be revisited to resolve the precise contribution of AI-2 substance pools and the methionine pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/metabolismo , Expressão Gênica , Homosserina/análogos & derivados , Lactonas/metabolismo , Metionina/metabolismo , Streptococcus/fisiologia , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Teste de Complementação Genética , Homosserina/genética , Homosserina/metabolismo , Metionina/genética , Mutação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
20.
Bioresour Technol ; 389: 129828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806363

RESUMO

L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.


Assuntos
Escherichia coli , Homosserina , Escherichia coli/genética , Escherichia coli/metabolismo , Homosserina/genética , Homosserina/metabolismo , Engenharia Metabólica , Fermentação , Divisão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA