Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648472

RESUMO

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Assuntos
Celobiose , Celulase , Celulose , Hypocreales , Celobiose/metabolismo , Celulase/metabolismo , Celulase/antagonistas & inibidores , Celulose/metabolismo , Hypocreales/enzimologia , Hypocreales/metabolismo , Imagem Individual de Molécula/métodos , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química
2.
Biotechnol Bioeng ; 121(6): 1927-1936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501733

RESUMO

Understanding the reaction mechanisms involved in the enzymatic hydrolysis of cellulose is important because it is kinetically the most limiting step of the bioethanol production process. The present work focuses on the enzymatic deactivation at the air-liquid interface, which is one of the aspects contributing to this global deactivation. This phenomenon has already been experimentally proven, but this is the first time that a model has been proposed to describe it. Experiments were performed by incubating Celluclast cocktail solutions on an orbital stirring system at different enzyme concentrations and different surface-to-volume ratios. A 5-day follow-up was carried out by measuring the global FPase activity of cellulases for each condition tested. The activity loss was proven to depend on both the air-liquid surface area and the enzyme concentration. Both observations suggest that the loss of activity takes place at the air-liquid surface, the total amount of enzymes varying with volume or enzyme concentration. Furthermore, tests performed using five individual enzymes purified from a Trichoderma reesei cocktail showed that the only cellulase that is deactivated at the air-liquid interface is cellobiohydrolase II. From the experimental data collected by varying the initial enzyme concentration and the ratio surface to volume, it was possible to develop, for the first time, a model that describes the loss of activity at the air-liquid interface for this configuration.


Assuntos
Celulases , Celulases/metabolismo , Celulases/química , Hypocreales/enzimologia , Ativação Enzimática , Celulose/metabolismo , Celulose/química , Hidrólise , Ar
3.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
4.
Microb Cell Fact ; 23(1): 150, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790055

RESUMO

BACKGROUND: Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS: Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS: Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 µmol guaiacol and 3.82 µmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION: Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.


Assuntos
Compostos Azo , Corantes , Lacase , Temperatura , Lacase/metabolismo , Lacase/química , Lacase/isolamento & purificação , Compostos Azo/metabolismo , Corantes/metabolismo , Corantes/química , Cinética , Concentração de Íons de Hidrogênio , Vermelho Congo/metabolismo , Concentração Osmolar , Hypocreales/enzimologia , Hypocreales/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação
5.
Biosci Biotechnol Biochem ; 87(3): 330-337, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36592961

RESUMO

A novel enzyme, 4-O-α-d-isomaltooligosaccharylmaltooligosaccharide 1,4-α-isomaltooligosaccharohydrolase (IMM-4IH), was previously discovered from Sarocladium kiliense U4520. In order to identify the factors underlying the unique substrate specificity of IMM-4IH, we endeavored to determine the amino acid sequence of the enzyme. By comparing the partial amino acid sequence of the enzyme to whole genome sequencing data of S. kiliense U4520, the IMM-4IH gene was estimated. The putative gene was expressed in Pichia pastoris, and its activity and properties were found to be consistent with those of the native enzyme. Comparing the amino acid sequence of IMM-4IH with those in the CAZy database led to classification in the glycoside hydrolase family 49 (GH49). Several amino acids important for catalysis (Asp406, Asp425, and Asp426) and substrate recognition at subsites + 1 and -3 were estimated by multiple sequence alignment analysis. These results provide important information for characterizing IMM-4IH and other GH49 enzymes.


Assuntos
Glicosídeo Hidrolases , Hypocreales , Sequência de Aminoácidos , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Análise de Sequência , Especificidade por Substrato , Hypocreales/enzimologia , Hypocreales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética
6.
J Biol Chem ; 297(5): 101256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597668

RESUMO

Owing to their ability to break glycosidic bonds in recalcitrant crystalline polysaccharides such as cellulose, the catalysis effected by lytic polysaccharide monooxygenases (LPMOs) is of major interest. Kinetics of these reductant-dependent, monocopper enzymes is complicated by the insoluble nature of the cellulose substrate and parallel, enzyme-dependent, and enzyme-independent side reactions between the reductant and oxygen-containing cosubstrates. Here, we provide kinetic characterization of cellulose peroxygenase (oxidative cleavage of glycosidic bonds in cellulose) and reductant peroxidase (oxidation of the reductant) activities of the LPMO TrAA9A of the cellulose-degrading model fungus Trichoderma reesei. The catalytic efficiency [Formula: see text] of the cellulose peroxygenase reaction (kcat = 8.5 s-1, and [Formula: see text] ) was an order of magnitude higher than that of the reductant (ascorbic acid) peroxidase reaction. The turnover of H2O2 in the ascorbic acid peroxidase reaction followed the ping-pong mechanism and led to irreversible inactivation of the enzyme with a probability of 0.0072. Using theoretical analysis, we suggest a relationship between the half-life of LPMO, the values of kinetic parameters, and the concentrations of the reactants.


Assuntos
Proteínas Fúngicas/química , Peróxido de Hidrogênio/química , Hypocreales/enzimologia , Oxigenases de Função Mista/química , Catálise , Hypocreales/genética , Cinética
7.
J Biol Chem ; 297(3): 101029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339742

RESUMO

Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Acetobacteraceae/metabolismo , Hidrólise , Microscopia de Força Atômica , Microscopia de Fluorescência , Pontos Quânticos , Especificidade por Substrato
8.
J Biol Chem ; 296: 100504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675751

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Hypocreales/enzimologia , Oxirredução , Polissacarídeos/química , Sordariales/enzimologia
9.
J Biol Chem ; 296: 100431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610545

RESUMO

Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Hypocreales/enzimologia , Adsorção , Proteínas de Transporte/metabolismo , Domínio Catalítico , Celulase/química , Celulases/química , Celulose 1,4-beta-Celobiosidase/química , Hidrólise , Hypocreales/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Trichoderma/enzimologia
10.
Protein Expr Purif ; 190: 106009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742914

RESUMO

The enzymatic conversion of lignocellulosic biomass to fermentable sugars is determined by the enzymatic activity of cellulases; consequently, improving enzymatic activity has attracted great interest in the scientific community. Cocktails of commercial cellulase often have low ß-glucosidase content, leading to the accumulation of cellobiose. This accumulation inhibits the activity of the cellulolytic complex and can be used to determine the enzymatic efficiency of commercial cellulase cocktails. Here, a novel codon optimized ß-glucosidase gene (B-glusy) from Trichoderma reesei QM6a was cloned and expressed in three strains of Escherichia coli (E. coli). The synthetic sequence containing an open reading frame (ORF) of 1491 bp was used to encode a polypeptide of 497 amino acid residues. The ß-glucosidase recombinant protein that was expressed (57 kDa of molecular weight) was purified by Ni agarose affinity chromatography and visualized by SDS-PAGE. The recombinant protein was better expressed in E. coli BL21 (DE3), and its enzymatic activity was higher at neutral pH and 30 °C (22.4 U/mg). Subsequently, the ß-glucosidase was immobilized using magnetite nano-support, after which it maintained >65% of its enzymatic activity from pH 6 to 10, and was more stable than the free enzyme above 40 °C. The maximum immobilization yield had enzyme activity of 97.2%. In conclusion, ß-glucosidase is efficiently expressed in the microbial strain E. coli BL21 (DE3) grown in a simplified culture medium.


Assuntos
Enzimas Imobilizadas , Escherichia coli , Proteínas Fúngicas , Expressão Gênica , Hypocreales/genética , Nanopartículas de Magnetita/química , beta-Glucosidase , Estabilidade Enzimática , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Hypocreales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta-Glucosidase/biossíntese , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
11.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163952

RESUMO

The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).


Assuntos
Quitinases/metabolismo , Hypocreales/enzimologia , Hypocreales/metabolismo , Biotecnologia , Quitina/química , Quitinases/isolamento & purificação , Extremófilos/isolamento & purificação , Extremófilos/metabolismo , Fermentação , Salinidade
12.
J Biol Chem ; 295(43): 14606-14617, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32816991

RESUMO

Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.


Assuntos
Proteínas de Bactérias/química , Cellulomonas/enzimologia , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Hypocreales/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cellulomonas/química , Cellulomonas/metabolismo , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Hypocreales/química , Hypocreales/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
13.
Plant J ; 103(6): 2178-2192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32578269

RESUMO

Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.


Assuntos
Arabidopsis/microbiologia , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , NADPH Oxidases/metabolismo , Simbiose , Arabidopsis/metabolismo , Proteínas Fúngicas/fisiologia , Regulação da Expressão Gênica de Plantas , Hypocreales/metabolismo , NADPH Oxidases/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento
14.
Microb Cell Fact ; 20(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407462

RESUMO

BACKGROUND: Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme. Fungal expression hosts like Aspergillus niger and Trichoderma reesei were successfully used to express CDH from the ascomycete Corynascus thermophilus. This study describes the expression of basidiomycetes PcCDH in T. reesei (PcCDHTr) and the detailed comparison of its molecular, catalytic and electrochemical properties in comparison with PcCDH expressed by P. chrysosporium and P. pastoris (PcCDHPp). RESULTS: PcCDHTr was recombinantly produced with a yield of 600 U L-1 after 4 days, which is fast compared to the secretion of the enzyme by P. chrysosporium. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps. Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The pH optima for electron acceptors are identical for PcCDHTr and PcCDH. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. Mass spectrometry showed high mannose-type N-glycans on PcCDH, but only single N-acetyl-D-glucosamine additions at the six potential N-glycosylation sites of PcCDHTr, which indicates the presence of an endo-N-acetyl-ß-D-glucosaminidase in the supernatant. CONCLUSIONS: Heterologous production of PcCDHTr is faster and the yield higher than secretion by P. chrysosporium. It also does not need a cellulose-based medium that impedes efficient production and purification of CDH by binding to the polysaccharide. The obtained high uniformity of PcCDHTr glycoforms will be very useful to investigate electron transfer characteristics in biosensors and biofuel cells, which are depending on the spatial restrictions inflicted by high-mannose N-glycan trees. The determined catalytic and electrochemical properties of PcCDHTr are very similar to those of PcCDH and the FAD cofactor occupancy is good, which advocates T. reesei as expression host for engineered PcCDH for biosensors and biofuel cells.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Celobiose/metabolismo , Hypocreales/enzimologia , Phanerochaete/enzimologia , Proteínas Recombinantes/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/isolamento & purificação , Glicosilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Transformação Genética
15.
Inorg Chem ; 60(20): 15096-15100, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529407

RESUMO

We report on the synthesis of the tetrasubstituted sandwich-type Keggin silicotungstates as the pure Na salts Na14[(A-α-SiW10O37)2{Co4(OH)2(H2O)2}]·37H2O (Na{SiW10Co2}2) and Na14[(A-α-SiW10O37)2{Ni4(OH)2(H2O)2}]·77.5H2O (Na{SiW10Ni2}2), which were prepared by applying a new synthesis protocol and characterized thoroughly in the solid state by single-crystal and powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and elemental analysis. Proteinase K was applied as a model protein and the polyoxotungstate (POT)-protein interactions of Na{SiW10Co2}2 and Na{SiW10Ni2}2 were studied side by side with the literature-known K5Na3[A-α-SiW9O34(OH)3{Co4(OAc)3}]·28.5H2O ({SiW9Co4}) featuring the same number of transition metals. Testing the solution behavior of applied POTs under the crystallization conditions (sodium acetate buffer, pH 5.5) by time-dependent UV/vis spectroscopy and electrospray ionization mass spectrometry speciation studies revealed an initial dissociation of the sandwich POTs to the disubstituted Keggin anions HxNa5-x[SiW10Co2O38]3- and HxNa5-x[SiW10Ni2O38]3- ({SiW10M2}, M = CoII and NiII) followed by partial rearrangement to the monosubstituted compounds (α-{SiW11Co} and α-{SiW11Ni}) after 1 week of aging. The protein crystal structure analysis revealed monosubstituted α-Keggin POTs in two conserved binding positions for all three investigated compounds, with one of these positions featuring a covalent attachment of the POT anion to an aspartate carboxylate. Despite the presence of both mono- and disubstituted anions in a crystallization mixture, proteinase K selectively binds to monosubstituted anions because of their preferred charge density for POT-protein interaction.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Endopeptidase K/química , Silício/química , Elementos de Transição/química , Compostos de Tungstênio/química , Cobalto/metabolismo , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Endopeptidase K/metabolismo , Hypocreales/enzimologia , Modelos Moleculares , Estrutura Molecular , Silício/metabolismo , Elementos de Transição/metabolismo , Compostos de Tungstênio/metabolismo
16.
Can J Microbiol ; 67(5): 406-414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33226848

RESUMO

Fungal protoplast fusion is an approach to introduce novel characteristics into industrially important strains. Cellulases, essential enzymes with a wide range of biotechnological applications, are produced by many species of the filamentous fungi Trichoderma. In this study, a collection of 60 natural isolates were screened for Avicel and carboxymethyl cellulose degradation, and two cellulase producers of Trichoderma virens and Trichoderma harzianum were used for protoplast fusion. One of the resulting hybrids with improved cellulase activity, C1-3, was fused with the hyperproducer Trichoderma reesei Rut-C30. A new selected hybrid, F7, was increased in cellulase activity 1.8 and 5 times in comparison with Rut-C30 and C1-3, respectively. The increases in enzyme activity correlated with an upregulation of the cellulolytic genes cbh1, cbh2, egl3, and bgl1 in the parents. The amount of mRNA of cbh1 and cbh2 in F7 resembled that of Rut-C30 while the bgl1 mRNA level was similar to that of C1-3. AFLP (amplified fragment length polymorphism) fingerprinting and GC-MS (gas chromatography - mass spectrometry) analysis represented variations in parental strains and fusants. In conclusion, the results demonstrate that a 3-interspecific hybrid strain was isolated, with improved characteristics for cellulase degradation and showing genetic polymorphisms and differences in the volatile profile, suggesting reorganizations at the genetic level.


Assuntos
Celulase/biossíntese , Hypocreales/enzimologia , Protoplastos/metabolismo , Trichoderma/enzimologia , Trichoderma/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Celulose/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocrea/enzimologia , Hypocrea/genética , Hypocreales/genética , Microbiologia Industrial , Polimorfismo Genético , RNA Fúngico/genética , RNA Mensageiro/genética
17.
PLoS Genet ; 14(4): e1007322, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630596

RESUMO

Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/genética , Transferência Genética Horizontal , Plantas/metabolismo , Trichoderma/genética , Basidiomycota/classificação , Basidiomycota/enzimologia , Basidiomycota/genética , Parede Celular/microbiologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Interações Hospedeiro-Patógeno , Hifas/enzimologia , Hifas/genética , Hifas/ultraestrutura , Hypocreales/classificação , Hypocreales/enzimologia , Hypocreales/genética , Microscopia Eletrônica de Varredura , Filogenia , Plantas/microbiologia , Trichoderma/enzimologia , Trichoderma/fisiologia
18.
Mikrochim Acta ; 188(6): 186, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33978843

RESUMO

Metal-organic framework (UiO-66-NH2)-incorporated organic polymer monolith was prepared by thermal polymerization. By virtue of the superior physical and chemical properties, the UiO-66-NH2-modified organic monolith was then functionalized by chiral selector cellulase via the condensation reaction between the primary amino groups and aldehyde groups. The synthesized materials were characterized by Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectrometry, thermogravimetric analysis, and nitrogen sorption isotherm. The cellulase@poly(glycidyl methacrylate-UiO-66-NH2-ethylene glycol dimethacrylate) (cellulase@poly(GMA-UiO-66-NH2-EDMA)) monolith was applied to enantiomerically separate the basic racemic forms of metoprolol, atenolol, esmolol, bisoprolol, and propranolol. In contrast to the cellulase@poly(GMA-co-EDMA) monolith without UiO-66-NH2, the cellulase@poly(GMA-UiO-66-NH2-EDMA) monolith reveals significantly improved enantiodiscrimination performance for metoprolol (Rs: 0 → 1.67), atenolol (Rs: 0 → 1.50), esmolol (Rs: 0 → 1.52), bisoprolol (Rs: 0 → 0.36), and propranolol (Rs: 0 → 0.44). The immobilization pH of cellulase, buffer pH, UiO-66-NH2 concentration, and the proportion of organic modifier were evaluated in detail with enantiomerically separating chiral molecules. The intra-day, inter-day, column-to-column, and inter-batch precision have been discussed, the result was preferable, and the relative standard deviation (RSD) of separation parameters was <4.3%. Schematic representation of the preparation of a UiO-66-NH2-modified organic polymer monolith for enantioseparating five racemic ß-blockers. UiO-66-NH2 was synthesized and converted into a monolith as the stationary phase. Then, the modified monolith containing cellulase as the chiral selector was applied in a capillary electrochromatography system for enantioseparating chiral drugs.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/isolamento & purificação , Celulase/química , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Fenoxipropanolaminas/isolamento & purificação , Antagonistas de Receptores Adrenérgicos beta 1/química , Eletrocromatografia Capilar , Hypocreales/enzimologia , Metacrilatos/química , Fenoxipropanolaminas/química , Ácidos Polimetacrílicos/química , Estereoisomerismo , Zircônio/química
19.
J Basic Microbiol ; 61(9): 814-824, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34312885

RESUMO

Trichoderma is a well-known soil-borne fungus, highly efficient producer of extracellular enzymes including chitinases. The aim of this study was to recover a chitinase from fermentation waste after harvesting Trichoderma koningiopsis Th003 conidia and assess its potential as an enhancer of Beauveria bassiana insecticidal activity against Diatraea saccharalis. T. koningiopsis was produced by solid fermentation, conidia were harvested, and a crude extract (CE) was recovered by washing the residual substrate (rice:wheat bran). The partially purified chitinase (PPC) (75 kDa product) with N-acetyl-ß-glucosaminidase activity was obtained by chromatography to 29.3-fold with optimal activity at pH 5 and 55°C. Both the CE and the PPC were mixed with B. bassiana Bv062 conidia and assessed in a bioassay against D. saccharalis larvae. The CE and PPC from T. koningiopsis Th003 did not affect the germination or viability of B. bassiana conidia and enhanced its insecticidal activity when used at 0.06 U/ml enzymatic activity with a 24.5% reduction in B. bassiana lethal time (LT90 ). This study demonstrated the potential of chitinases produced by T. koningiopsis in solid fermentation to be recovered from the waste substrate and used as an additive to enhance B. bassiana, adding value to the main waste from the Trichoderma biopesticide/biofertilizer industries.


Assuntos
Beauveria/fisiologia , Quitinases/farmacologia , Hypocreales/enzimologia , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Animais , Agentes de Controle Biológico , Fermentação , Controle Biológico de Vetores/métodos , Esporos Fúngicos/enzimologia
20.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806828

RESUMO

Cyanide is a hazardous and detrimental chemical that causes the inactivation of the respiration system through the inactivation of cytochrome c oxidase. Because of the limitation in the number of cyanide-degrading enzymes, there is a great demand to design and introduce new enzymes with better functionality. This study developed an integrated method of protein-homology-modelling and ligand-docking protein-design approaches that reconstructs a better active site from cyanide hydratase (CHT) structure. Designing a mutant CHT (mCHT) can improve the CHT performance. A computational design procedure that focuses on mutation for constructing a new model of cyanide hydratase with better activity was used. In fact, this study predicted the three-dimensional (3D) structure of CHT for subsequent analysis. Inducing mutation on CHT of Trichoderma harzianum was performed and molecular docking was used to compare protein interaction with cyanide as a ligand in both CHT and mCHT. By combining multiple designed mutations, a significant improvement in docking for CHT was obtained. The results demonstrate computational capabilities for enhancing and accelerating enzyme activity. The result of sequence alignment and homology modeling show that catalytic triad (Cys-Glu-Lys) was conserved in CHT of Trichoderma harzianum. By inducing mutation in CHT structure, MolDock score enhanced from -18.1752 to -23.8575, thus the nucleophilic attack can occur rapidly by adding Cys in the catalytic cavity and the total charge of protein in pH 6.5 is increased from -6.0004 to -5.0004. Also, molecular dynamic simulation shows a stable protein-ligand complex model. These changes would help in the cyanide degradation process by mCHT.


Assuntos
Cianetos/química , Proteínas Fúngicas/química , Hidroliases/química , Hypocreales/enzimologia , Simulação de Acoplamento Molecular , Substituição de Aminoácidos , Proteínas Fúngicas/genética , Hidroliases/genética , Hypocreales/genética , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA