Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 247: 118793, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896291

RESUMO

Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/instrumentação , Razão Sinal-Ruído , Animais , Mapeamento Encefálico/instrumentação , Desenho de Equipamento , Optogenética/instrumentação , Estudo de Prova de Conceito , Ratos
2.
Neuroimage ; 239: 118285, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34147632

RESUMO

There is an increasing interest in quantitative imaging of T1, T2 and diffusion contrast in the brain due to greater robustness against bias fields and artifacts, as well as better biophysical interpretability in terms of microstructure. However, acquisition time constraints are a challenge, particularly when multiple quantitative contrasts are desired and when extensive sampling of diffusion directions, high b-values or long diffusion times are needed for multi-compartment microstructure modeling. Although ultra-high fields of 7 T and above have desirable properties for many MR modalities, the shortening T2 and the high specific absorption rate (SAR) of inversion and refocusing pulses bring great challenges to quantitative T1, T2 and diffusion imaging. Here, we present the MESMERISED sequence (Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion). MESMERISED removes the dead time in Stimulated Echo Acquisition Mode (STEAM) imaging by an echo-shifting mechanism. The echo-shift (ES) factor is independent of multiband (MB) acceleration and allows for very high multiplicative (ESxMB) acceleration factors, particularly under moderate and long mixing times. This results in super-acceleration and high time efficiency at 7 T for quantitative T1 and diffusion imaging, while also retaining the capacity to perform quantitative T2 and B1 mapping. We demonstrate the super-acceleration of MESMERISED for whole-brain T1 relaxometry with total acceleration factors up to 36 at 1.8 mm isotropic resolution, and up to 54 at 1.25 mm resolution qT1 imaging, corresponding to a 6x and 9x speedup, respectively, compared to MB-only accelerated acquisitions. We then demonstrate highly efficient diffusion MRI with high b-values and long diffusion times in two separate cases. First, we show that super-accelerated multi-shell diffusion acquisitions with 370 whole-brain diffusion volumes over 8 b-value shells up to b = 7000 s/mm2 can be generated at 2 mm isotropic in under 8 minutes, a data rate of almost a volume per second, or at 1.8 mm isotropic in under 11 minutes, achieving up to 3.4x speedup compared to MB-only. A comparison of b = 7000 s/mm2 MESMERISED against standard MB pulsed gradient spin echo (PGSE) diffusion imaging shows 70% higher SNR efficiency and greater effectiveness in supporting complex diffusion signal modeling. Second, we demonstrate time-efficient sampling of different diffusion times with 1.8 mm isotropic diffusion data acquired at four diffusion times up to 290 ms, which supports both Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) at each diffusion time. Finally, we demonstrate how adding quantitative T2 and B1+ mapping to super-accelerated qT1 and diffusion imaging enables efficient quantitative multi-contrast mapping with the same MESMERISED sequence and the same readout train. MESMERISED extends possibilities to efficiently probe T1, T2 and diffusion contrast for multi-component modeling of tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Neuroimagem/métodos , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem Ecoplanar/instrumentação , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Neuroimagem/instrumentação
3.
NMR Biomed ; 34(1): e4420, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021342

RESUMO

INTRODUCTION: Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD: On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS: Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION: Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.


Assuntos
Aorta Abdominal/diagnóstico por imagem , Técnicas de Imagem de Sincronização Cardíaca/métodos , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Rigidez Vascular , Aorta Abdominal/fisiologia , Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/instrumentação , Valores de Referência , Reprodutibilidade dos Testes , Respiração , Razão Sinal-Ruído
4.
Neuroimage ; 217: 116884, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360689

RESUMO

Multi-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early microstructural damage in neurological disorders. It is usually performed in vivo by combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to physiological noise. This ultimately hinders joint multi-contrast modelling and makes the geometric correspondence of parametric maps challenging. We propose an approach to overcome these limitations, by implementing state-of-the-art microstructural MRI of the spinal cord with a unified signal readout in vivo (i.e. with matched spatial encoding parameters across a range of imaging contrasts). We base our acquisition on single-shot echo planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma). Importantly, the unified acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality enhancement via multi-contrast image denoising methods. As a proof-of-concept, here we provide a demonstration with one such method, known as Marchenko-Pastur (MP) Principal Component Analysis (PCA) denoising. MP-PCA is a singular value (SV) decomposition truncation approach that relies on redundant acquisitions, i.e. such that the number of measurements is large compared to the number of components that are maintained in the truncated SV decomposition. Here we used in vivo and synthetic data to test whether a unified readout enables more efficient MP-PCA denoising of less redundant acquisitions, since these can be denoised jointly with more redundant ones. We demonstrate that a unified readout provides robust multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by up to 17% for mean kurtosis, 8% for bound pool fraction (myelin-sensitive), and 13% for T1, while enabling more efficient denoising of modalities limited in redundancy (e.g. relaxometry). In conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions, whose quality benefits from multi-contrast denoising methods such as MP-PCA.


Assuntos
Imagem Ecoplanar/métodos , Medula Espinal/diagnóstico por imagem , Algoritmos , Simulação por Computador , Imagem de Tensor de Difusão , Imagem Ecoplanar/instrumentação , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Bainha de Mielina/patologia , Análise de Componente Principal , Razão Sinal-Ruído
5.
J Neurooncol ; 142(3): 587-595, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806888

RESUMO

PURPOSE: The objective of the current study was to explore the efficacy of using pH-weighted amine CEST-EPI as a potential non-invasive imaging biomarker for treatment response and/or failure in recurrent GBM patients treated with bevacizumab. METHOD: A total of 11 patients with recurrent GBM treated with bevacizumab were included in this prospective study. CEST-EPI, perfusion MRI, and standardized anatomic MRI were obtained in patients before and after bevacizumab administration. CEST-EPI measures of magnetization transfer ratio asymmetry (MTRasym) at 3 ppm were used for pH-weighted imaging contrast. Multiple measures were examined for their association with progression-free survival (PFS). RESULT: Tumor acidity, measured with MTRasym at 3 ppm, was significantly reduced in both contrast enhancing and non-enhancing tumor after bevacizumab (p = 0.0002 and p < 0.00001, respectively). The reduction in tumor acidity in both contrast enhancing and non-enhancing tumor was linearly correlated with PFS (p = 0.044 and p = 0.00026, respectively). In 9 of the 11 patients, areas of residual acidity were localized to areas of tumor recurrence, typically around 2 months prior to radiographic progression. Univariate (p = 0.006) and multivariate Cox regression controlling for age (p = 0.009) both indicated that change in tumor acidity (ΔMTRasym at 3 ppm) was a significant predictor of PFS. CONCLUSIONS: This pilot study suggests pH-weighted amine CEST MRI may have value as a non-invasive, early imaging biomarker for bevacizumab treatment response and failure. Early decreases MTRasym at 3.0 ppm in recurrent GBM after bevacizumab may be associated with better PFS. Residual or emerging regions of acidity may colocalize to the site of tumor recurrence.


Assuntos
Aminas/química , Bevacizumab/efeitos adversos , Biomarcadores/análise , Imagem Ecoplanar/métodos , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Neuroimagem/métodos , Adulto , Idoso , Antineoplásicos Imunológicos/efeitos adversos , Imagem Ecoplanar/instrumentação , Feminino , Seguimentos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Prospectivos , Falha de Tratamento
6.
Neuroimage ; 168: 71-87, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28602943

RESUMO

Functional MRI (fMRI) at 7T and above provides improved Signal-to-Noise Ratio and Contrast-to-Noise Ratio compared to 3T acquisitions. In addition to the beneficial effects on spin polarization and magnetization of deoxyhemoglobin, the increased applied field also further magnetizes air and tissue. While the magnets themselves typically provide a static B0 field with sufficient spatial homogeneity, the diamagnetism of tissue and the paramagnetism of air causes local field deviations inside the human head. These spatially-varying field offsets (ΔB0) cause image artifacts, especially in single shot EPI, including geometric distortion, signal dropout, and blurring. These effects are particularly strong near air-tissue interfaces such as the frontal sinus, and ear canals. Furthermore, if the field offsets are dynamically modulated through physiological processes such as respiration or motion, then the effect on the image time-series can be even more problematic. While post-processing methods have been developed to mitigate these effects, the ideal solution would be to reduce the ΔB0 variations at their source. Typically 7T scanners contain 2nd and some 3rd order spherical harmonic shim coil terms to cancel static ΔB0 variations of low spatial order. In this article, we will motivate the need for improved, higher-order compensation for B0 inhomogeneity and potentially add dynamic control of these fields. We discuss and compare several promising hardware approaches for static and dynamic B0 shimming using either higher-order spherical harmonic shim coils or multi-coil shim arrays as well as passive shimming approaches, and active variants such and adaptive current networks.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Neuroimagem Funcional , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos
7.
Neuroimage ; 168: 321-331, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27397624

RESUMO

We propose a method to calculate field maps from the phase of each EPI in an fMRI time series. These field maps can be used to correct the corresponding magnitude images for distortion caused by inhomogeneity in the static magnetic field. In contrast to conventional static distortion correction, in which one 'snapshot' field map is applied to all subsequent fMRI time points, our method also captures dynamic changes to B0 which arise due to motion and respiration. The approach is based on the assumption that the non-B0-related contribution to the phase measured by each radio-frequency coil, which is dominated by the coil sensitivity, is stable over time and can therefore be removed to yield a field map from EPI. Our solution addresses imaging with multi-channel coils at ultra-high field (7T), where phase offsets vary rapidly in space, phase processing is non-trivial and distortions are comparatively large. We propose using dual-echo gradient echo reference scan for the phase offset calculation, which yields estimates with high signal-to-noise ratio. An extrapolation method is proposed which yields reliable estimates for phase offsets even where motion is large and a tailored phase unwrapping procedure for EPI is suggested which gives robust results in regions with disconnected tissue or strong signal decay. Phase offsets are shown to be stable during long measurements (40min) and for large head motions. The dynamic distortion correction proposed here is found to work accurately in the presence of large motion (up to 8.1°), whereas a conventional method based on single field map fails to correct or even introduces distortions (up to 11.2mm). Finally, we show that dynamic unwarping increases the temporal stability of EPI in the presence of motion. Our approach can be applied to any EPI measurements without the need for sequence modification.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/fisiologia , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/normas , Feminino , Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Masculino , Imagens de Fantasmas
8.
Magn Reson Med ; 80(4): 1714-1725, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29424461

RESUMO

PURPOSE: A 16-channel multi-coil shimming setup was developed to mitigate severe B0 field perturbations at ultrahigh field and improve data quality for human brain imaging and spectroscopy. METHODS: The shimming setup consisted of 16 circular B0 coils that were positioned symmetrically on a cylinder with a diameter of 370 mm. The latter was large enough to house a shielded 18/32-channel RF transceiver array. The shim performance was assessed via simulations and phantom as well as in vivo measurements at 9.4 T. The global and dynamic shimming performance of the multi-coil setup was compared with the built-in scanner shim system for EPI and single voxel spectroscopy. RESULTS: The presence of the multi-coil shim did not influence the performance of the RF coil. The performance of the proposed setup was similar to a full third-order spherical harmonic shim system in the case of global static and dynamic slice-wise shimming. Dynamic slice-wise shimming with the multi-coil setup outperformed global static shimming with the scanner's second-order spherical-harmonic shim. The multi-coil setup allowed mitigating geometric distortions for EPI. The combination of the multi-coil shim setup with the zeroth and first-order shim of the scanner further reduced the standard deviation of the B0 field in the brain by 12% compared with the case in which multi-coil was used exclusively. CONCLUSION: The combination of a multi-coil setup and the linear shim channels of the scanner provides a straightforward solution for implementing dynamic slice-wise shimming without requiring an additional pre-emphasis setup.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Adulto Jovem
9.
Clin Radiol ; 73(2): 141-148, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269037

RESUMO

AIM: To evaluate apparent diffusion coefficient (ADC) measurements of breast lesions on different computer platforms to address post-processing influences on ADC measurement reproducibility. MATERIALS AND METHODS: One hundred biopsy-proven breast lesions were included in this prospective study. MRI examination was performed at 3 T using standard sequences and an echo planar diffusion-weighted imaging sequence with b-values of 0 and 850 s/mm2. The images were reviewed by two radiologists in consensus. Regions of interest were placed manually within the lesion, following its contour. Care was taken to exclude adjacent normal tissue or necrotic tissue and cystic components within the lesion. The mean ADC value was measured for each lesion on two different platforms: On the MRI workstation that came with the scanner and on a commercially available DICOM (digital imaging and communication in medicine) viewer. Agreement between workstation measurements was evaluated using intraclass correlation coefficient and Bland-Altman plots. RESULTS: Fifty-nine malignant and 41 benign lesions were analysed. Of the benign lesions, 28 were mass lesions and 13 were non-mass-like enhancements. In addition, 46 of the malignant lesions were masses and 13 were non-mass-like enhancements. Agreement between the two workstation measurements was high (intraclass correlation coefficients=0.981). Using Bland-Altman plots, no systematic differences were identified between workstations. Limits of agreement ranged between a minimum of -0.071×10-3 mm2/s and a maximum of 0.102×10-3 mm2/s. CONCLUSION: ADC measurements are reproducible among the workstations considered in this study.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
Magn Reson Med ; 77(3): 998-1009, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26932565

RESUMO

PURPOSE: Ghosting-robust reconstruction of blipped-CAIPI echo planar imaging simultaneous multislice data with low computational load. METHODS: To date, Slice-GRAPPA, with "odd-even" kernels that improve ghosting performance, has been the framework of choice for such reconstructions due to its predecessor SENSE-GRAPPA being deemed unsuitable for blipped-CAIPI data. Modifications to SENSE-GRAPPA are used to restore CAIPI compatibility and to make it robust against ghosting. Two implementations are tested, one where slices and in-plane unaliasing are dealt in the same serial manner as in Slice-GRAPPA [referred to as one-dimensional (1D)-NGC-SENSE-GRAPPA, where NGC stands for Nyquist Ghost Corrected] and one where both are unaliased in a single step (2D-NGC-SENSE-GRAPPA), which is analytically and experimentally shown to be computationally cheaper. RESULTS: The 1D-NGC-SENSE-GRAPPA and odd-even Slice-GRAPPA perform identically, whereas 2D-NGC-SENSE-GRAPPA shows reduced error propagation, less residual ghosting when reliable reference data were available. When the latter was not the case, error propagation was increased. CONCLUSION: Unlike Slice-GRAPPA, SENSE-GRAPPA operates fully within the GRAPPA framework, for which improved reconstructions (e.g., iterative, nonlinear) have been developed over the past decade. It could, therefore, bring benefit to the reconstruction of SMS data as an attractive alternative to Slice-GRAPPA. Magn Reson Med 77:998-1009, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Algoritmos , Artefatos , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Imagem Ecoplanar/instrumentação , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Magn Reson Med ; 77(2): 538-546, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26806525

RESUMO

PURPOSE: To enable large field-of-view, time-resolved volumetric coverage in hyperpolarized 13 C metabolic imaging by implementing a novel data acquisition and image reconstruction method based on the compressed sensing framework. METHODS: A spectral-spatial pulse for single-resonance excitation followed by a symmetric echo-planar imaging (EPI) readout was implemented for encoding a 72 × 18 cm2 field of view at 5 × 5 mm2 resolution. Random undersampling was achieved with blipped z-gradients during the ramp portion of the echo-planar imaging readout. The sequence and reconstruction were tested with phantom studies and consecutive in vivo hyperpolarized 13 C scans in rats. Retrospectively and prospectively undersampled data were compared on the basis of structural similarity in the reconstructed images and the quantification of the lactate-to-pyruvate ratio in rat kidneys. RESULTS: No artifacts or loss of resolution are evident in the compressed sensing reconstructed images acquired with the proposed sequence. Structural similarity analysis indicate that compressed sensing reconstructions can accurately recover spatial features in the metabolic images evaluated. CONCLUSION: A novel z-blip acquisition sequence for compressed sensing accelerated hyperpolarized 13 C 3D echo-planar imaging was developed and demonstrated. The close agreement in lactate-to-pyruvate ratios from both retrospectively and prospectively undersampled data from rats shows that metabolic information is preserved with acceleration factors up to 3-fold with the developed method. Magn Reson Med 77:538-546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Compressão de Dados/métodos , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Rim/metabolismo , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Artefatos , Imagem Ecoplanar/instrumentação , Ácido Láctico/metabolismo , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Movimento (Física) , Imagens de Fantasmas , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
NMR Biomed ; 30(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28328013

RESUMO

A diffusion measurement in the short-time surface-to-volume ratio (S/V) limit (Mitra et al., Phys Rev Lett. 1992;68:3555) can disentangle the free diffusion coefficient from geometric restrictions to diffusion. Biophysical parameters, such as the S/V of tissue membranes, can be used to estimate microscopic length scales non-invasively. However, due to gradient strength limitations on clinical MRI scanners, pulsed gradient spin echo (PGSE) measurements are impractical for probing the S/V limit. To achieve this limit on clinical systems, an oscillating gradient spin echo (OGSE) sequence was developed. Two phantoms containing 10 fiber bundles, each consisting of impermeable aligned fibers with different packing densities, were constructed to achieve a range of S/V values. The frequency-dependent diffusion coefficient, D(ω), was measured in each fiber bundle using OGSE with different gradient waveforms (cosine, stretched cosine, and trapezoidal), while D(t) was measured from PGSE and stimulated-echo measurements. The S/V values derived from the universal high-frequency behavior of D(ω) were compared against those derived from quantitative proton density measurements using single spin echo (SE) with varying echo times, and from magnetic resonance fingerprinting (MRF). S/V estimates derived from different OGSE waveforms were similar and demonstrated excellent correlation with both SE- and MRF-derived S/V measures (ρ ≥ 0.99). Furthermore, there was a smoother transition between OGSE frequency f and PGSE diffusion time when using teffS/V=9/64f, rather than the commonly used teff = 1/(4f), validating the specific frequency/diffusion time conversion for this regime. Our well-characterized fiber phantom can be used for the calibration of OGSE and diffusion modeling techniques, as the S/V ratio can be measured independently using other MR modalities. Moreover, our calibration experiment offers an exciting perspective of mapping tissue S/V on clinical systems.


Assuntos
Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Oscilometria/métodos , Imagens de Fantasmas , Polietilenos/química , Anisotropia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Neuroimage ; 125: 153-161, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26497267

RESUMO

Monkeys are a valuable model for investigating the structure and function of the brain. To attain the requisite resolution to resolve fine anatomical detail and map localized brain activation requires radiofrequency (RF) coils that produce high signal-to-noise ratios (SNRs) both spatially (image SNR) and temporally. Increasing the strength of the static magnetic field is an effective method to improve SNR, yet this comes with commensurate challenges in RF coil design. First, at ultrahigh field strengths, the magnetic field produced by a surface coil in a dielectric medium is asymmetric. In neuroimaging of rhesus macaques, this complex field pattern is compounded by the heterogeneous structure of the head. The confluence of these effects results in a non-uniform flip angle, but more markedly, a suboptimal circularly polarized mode with reduced transmit efficiency. Secondly, susceptibility-induced geometric distortions are exacerbated when performing echo-planar imaging (EPI), which is a standard technique in functional studies. This requires receive coils capable of parallel imaging with low noise amplification during image reconstruction. To address these challenges at 7T, this study presents a parallel (8-channel) transmit coil developed for monkey imaging, along with a highly parallel (24-channel) receive coil. RF shimming with the parallel-transmit coil produced significant advantages-the transmit field was 38% more uniform than a traditional circularly polarized mode and 54% more power-efficient, demonstrating that parallel-transmit coils should be used for monkey imaging at ultrahigh field strengths. The receive coil had the ability to accelerate along an arbitrary axis with at least a three-fold reduction factor, thereby reducing geometric distortions in whole-brain EPI.


Assuntos
Mapeamento Encefálico/instrumentação , Imagem Ecoplanar/instrumentação , Neuroimagem/instrumentação , Animais , Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Macaca mulatta , Neuroimagem/métodos
14.
Magn Reson Med ; 76(6): 1775-1789, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26887895

RESUMO

PURPOSE: MR measurements from an echo-planar imaging (EPI) sequence produce Nyquist ghost artifacts that originate from inconsistencies between odd and even echoes. Several reconstruction algorithms have been proposed to reduce such artifacts, but most of these methods require either additional reference scans or multipass EPI acquisition. This article proposes a novel and accurate single-pass EPI ghost artifact correction method that does not require any additional reference data. THEORY AND METHODS: After converting a ghost correction problem into separate k-space data interpolation problems for even and odd phase encoding, our algorithm exploits an observation that the differential k-space data between the even and odd echoes is a Fourier transform of an underlying sparse image. Accordingly, we can construct a rank-deficient Hankel structured matrix, whose missing data can be recovered using an annihilating filter-based low rank Hankel structured matrix completion approach. RESULTS: The proposed method was applied to EPI data for both single and multicoil acquisitions. Experimental results using in vivo data confirmed that the proposed method can completely remove ghost artifacts successfully without prescan echoes. CONCLUSION: Owing to the discovery of the annihilating filter relationship from the intrinsic EPI image property, the proposed method successfully suppresses ghost artifacts without a prescan step. Magn Reson Med 76:1775-1789, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Artefatos , Imagem Ecoplanar/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Análise de Fourier , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
15.
Magn Reson Med ; 75(1): 280-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25753774

RESUMO

PURPOSE: A novel k-space reconstruction method is proposed for generating diffusion-weighted imaging (DWI) using navigated interleaved multishot EPI (msEPI). THEORY AND METHODS: In interleaved msEPI, each shot of data acquired from one coil channel is a subset of the full k-space of that channel. All the k-space subsets of one channel can be treated as an undersampled dataset of a virtual multichannel data, which can be reconstructed by the GRAPPA algorithm after k-space realignment. The intershot phase variations are directly compensated using navigator echoes as the auto-calibrating data in GRAPPA reconstruction. In cases of multichannel msEPI data, all the virtual channels and actual channels can be integrated into a single GRAPPA reconstruction step. The proposed method is tested using both simulation and in-vivo data. The simulation results produced by the proposed method and a SENSE-based method are compared. RESULTS: The simulated images generated by the proposed method exhibit less relative error compared with those generated by the SENSE method. Inconsistent shot-to-shot phase variation is naturally resolved by GRAPPA calibration without additional phase map processing. High-quality brain DWI with submillimeter resolution is obtained using our proposed reconstruction method. CONCLUSION: A novel k-space msEPI reconstruction method has been developed for generating high-quality diffusion imaging.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Técnica de Subtração , Algoritmos , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem Ecoplanar/instrumentação , Humanos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
16.
Magn Reson Med ; 76(5): 1504-1511, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26536831

RESUMO

PURPOSE: To develop a new artifact-suppressed optimal three-dimensional (3D) T1 - and T2 *-weighted dual-echo imaging. METHODS: We optimized flip angles for 3D T1 - and T2 *-weighted imaging by conventional dual-echo in vivo experiments and computer simulations, and then implemented a dual-echo sequence with an echo-specific k-space reordering scheme to satisfy the optimal flip angles for both T1 and T2 * contrast. We also proposed two strategies to suppress ringing artifacts induced by the abrupt flip angle jumps in the proposed dual echo sequence: (i) implementing smooth transition regions and (ii) discarding the k-space regions of the abrupt flip angle jumps as dummy phase-encoding steps. RESULTS: The optimal flip angles measured from experiments were different between T1 - and T2 *-weighted contrast, in agreement with simulations. The echo-specific k-space reordered dual-echo sequence showed optimal T1 and T2 * contrast simultaneously, but also showed ringing artifacts because of high flip-angle changes between k-space regions. The two proposed strategies effectively suppressed the ringing artifacts. CONCLUSION: The proposed 3D dual-echo sequence provided optimal T1 and T2 * contrast simultaneously with no artifacts and thus is potentially applicable to routine clinical applications for simultaneous high resolution T1 - and T2 *-weighted imaging. Magn Reson Med 76:1504-1511, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/instrumentação , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Magn Reson Med ; 75(1): 372-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25735538

RESUMO

PURPOSE: A comprehensive image-based characterization of white matter should include the ability to quantify myelin and axonal attributes irrespective of the complexity of fibre organization within the voxel. While progress has been made with diffusion MRI-based approaches to measure axonal morphology, to date available myelin metrics simply assign a single scalar value to the voxel, reflecting some form of average of its constituent fibres. Here, a new experimental framework that combines diffusion MRI and relaxometry is introduced. It provides, for the first time, the ability to assign to each unique fibre system within a voxel, a unique value of the longitudinal relaxation time, T1, which is largely influenced by the myelin content. METHODS: We demonstrate the method through simulations, in a crossing fibres phantom, in fixed brains and in vivo. RESULTS: The method is capable of recovering unique values of T1 for each fibre population. CONCLUSION: The ability to extract fibre-specific relaxometry properties will provide enhanced specificity and, therefore, sensitivity to differences in white matter architecture, which will be invaluable in many neuroimaging studies. Further the enhanced specificity should ultimately lead to earlier diagnosis and access to treatment in a range of white matter diseases where axons are affected.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Substância Branca/anatomia & histologia , Algoritmos , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem Ecoplanar/instrumentação , Aumento da Imagem/métodos , Imagem Multimodal/métodos , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Magn Reson Med ; 76(3): 862-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26445426

RESUMO

PURPOSE: To compare signal-to-noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration-compensated spin-echo (SE) and stimulated echo acquisition mode (STEAM) imaging. METHODS: Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50-450 s/mm(2) ) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. RESULTS: In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt (SE/STEAM), was 2.84 ± 0.08 for all tested b-values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b-value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. CONCLUSION: Cardiac DTI using motion-compensated SE yields a 2.3-2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862-872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Algoritmos , Imagem de Tensor de Difusão/instrumentação , Imagem Ecoplanar/instrumentação , Humanos , Aumento da Imagem/métodos , Imagem Cinética por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Marcadores de Spin
19.
Magn Reson Med ; 76(1): 206-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26272108

RESUMO

PURPOSE: To develop reliable three-dimensional (3D) segmented echo planar imaging (seg-EPI) proton resonance frequency (PRF) temperature monitoring in the presence of respiration-induced B0 variation. METHODS: A free induction decay (FID) phase navigator was inserted into a 3D seg-EPI sequence before and after EPI readout to monitor B0 field variations. Using the field change estimates, the phase of each k-space line was adjusted to remove the additional phase from the respiratory induced off-resonance. This correction technique was evaluated while heating with MR-guided focused ultrasound (MRgFUS) in phantoms with simulated breathing and during nonheating conditions in healthy in vivo breasts. RESULTS: With k-space phase correction, the standard deviation of magnitude images and PRF temperature measurements in breast from five volunteers improved by an average factor of 1.5 and 2.1, respectively. Improved accuracy of temperature estimates was observed after correction while heating with MRgFUS in phantoms. CONCLUSION: Phase correction based on two FID navigators placed before and after the echo train provides promising results for implementing 3D monitoring of thermal therapy treatments in the presence of field variations due to respiration. Magn Reson Med 76:206-213, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Artefatos , Mama/fisiologia , Imagem Ecoplanar/instrumentação , Imageamento Tridimensional/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Termografia/métodos , Adulto , Algoritmos , Temperatura Corporal/fisiologia , Mama/anatomia & histologia , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
20.
NMR Biomed ; 29(11): 1563-1576, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27717216

RESUMO

Acidity within the extracellular milieu is a hallmark of cancer. There is a current need for fast, high spatial resolution pH imaging techniques for clinical evaluation of cancers, including gliomas. Chemical exchange saturation transfer (CEST) MRI targeting fast-exchanging amine protons can be used to obtain high-resolution pH-weighted images, but conventional CEST acquisition strategies are slow. There is also a need for more accurate MR simulations to better understand the effects of amine CEST pulse sequence parameters on pH-weighted image contrast. In the current study we present a simulation of amine CEST contrast specific for a newly developed CEST echoplanar imaging (EPI) pulse sequence. The accuracy of the simulations was validated by comparing the exchange rates and Z-spectrum under a variety of conditions using physical phantoms of glutamine with different pH values. The effects of saturation pulse shapes, pulse durations, pulse train lengths, repetition times, and relaxation rates of bulk water and exchangeable amine protons on the CEST signal were explored for normal-appearing white matter (NAWM), glioma, and cerebrospinal fluid. Last, 18 patients with WHO II-IV gliomas were evaluated. Results showed that the Z-spectrum was highly dependent on saturation pulse shape, repetition time, saturation amplitude, magnetic field strength, and T2 within bulk water; however, the Z-spectrum was only minimally influenced by saturation pulse duration and the specific relaxation rates of amine protons. Results suggest that a Gaussian saturation pulse train consisting of 3 × 100 ms pulses using the minimum allowable repetition time is optimal for achieving over 90% available contrast across all tissues. Results also demonstrate that high saturation pulse amplitude and scanner field strength (>3 T) are necessary for adequate endogenous pH-weighted amine CEST contrast. pH-weighted amine CEST contrast increased with increasing tumor grade, with glioblastoma showing significantly higher contrast compared with WHO II or III gliomas.


Assuntos
Aminoácidos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Imagem Ecoplanar/métodos , Glioma/metabolismo , Concentração de Íons de Hidrogênio , Imagem Molecular/métodos , Algoritmos , Aminas/química , Aminas/metabolismo , Aminoácidos/química , Biomarcadores Tumorais/química , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Imagem Ecoplanar/instrumentação , Glioma/química , Glioma/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Biológicos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA