Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 157(6): 1380-1392, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906154

RESUMO

Bromine is ubiquitously present in animals as ionic bromide (Br(-)) yet has no known essential function. Herein, we demonstrate that Br(-) is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a posttranslational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br deficiency is lethal in Drosophila, whereas Br replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br(-), collagen IV, and peroxidasin. We establish that Br(-) is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals, and its deficiency may be relevant to BM alterations observed in nutritional and smoking-related disease. PAPERFLICK:


Assuntos
Membrana Basal/metabolismo , Bromo/metabolismo , Drosophila/crescimento & desenvolvimento , Oligoelementos/metabolismo , Animais , Membrana Basal/ultraestrutura , Bromo/deficiência , Linhagem Celular , Colágeno/metabolismo , Drosophila/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Iminas/metabolismo , Larva/ultraestrutura , Camundongos , Peroxidase/genética , Peroxidase/metabolismo , Peroxidasina
2.
J Biol Chem ; 300(2): 105642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199566

RESUMO

Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.


Assuntos
Iminas , Oxirredutases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Iminas/química , Iminas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Modelos Moleculares
3.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619497

RESUMO

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cianetos , Cianetos/metabolismo , Cianetos/química , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/química , Iminas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrutura Molecular
4.
Biopharm Drug Dispos ; 45(1): 30-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236698

RESUMO

SCO-267 is a potent G-protein-coupled receptor 40 agonist that is undergoing clinical development for the treatment of type 2 diabetes mellitus. The current work was undertaken to investigate the bioactivation potential of SCO-267 in vitro and in vivo. Three SCO-267-derived glutathione (GSH) conjugates (M1-M3) were found both in rat and human liver microsomal incubations supplemented with GSH and nicotinamide adenine dinucleotide phosphate. Two GSH conjugates (M1-M2) together with two N-acetyl-cysteine conjugates (M4-M5) were detected in the bile of rats receiving SCO-267 at 10 mg/kg. The identified conjugates suggested the generation of quinone-imine and ortho-quinone intermediates. CYP3A4 was demonstrated to primarily catalyze the bioactivation of SCO-267. In addition, SCO-267 concentration-, time-, and NADPH-dependently inactivated CYP3A in human liver microsomes using testosterone as a probe substrate, along with KI and kinact values of 4.91 µM and 0.036 min-1 , respectively. Ketoconazole (a competitive inhibitor of CYP3A) displayed no significant protective effect on SCO-267-induced CYP3A inactivation. However, inclusion of GSH showed significant protection. These findings revealed that SCO-267 undergoes a facile CYP3A4-catalyzed bioactivation with the generation of quinone-imine and ortho-quinone intermediates, which were assumed to be involved in SCO-267 induced CYP3A inactivation. These findings provide further insight into the bioactivation pathways involved in the generation of reactive, potentially toxic metabolites of SCO-267. Further studies are needed to evaluate the influence of SCO-267 metabolism on the safety of this drug in vivo.


Assuntos
Benzoquinonas , Citocromo P-450 CYP3A , Diabetes Mellitus Tipo 2 , Piperidinas , Piridinas , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Diabetes Mellitus Tipo 2/metabolismo , Quinonas/metabolismo , Iminas/metabolismo , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo
5.
Trends Biochem Sci ; 44(10): 849-860, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31103411

RESUMO

Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.


Assuntos
Aminas/metabolismo , Proteínas de Choque Térmico/metabolismo , Iminas/metabolismo , Ribonucleases/metabolismo , Aminas/química , Catálise , Proteínas de Choque Térmico/química , Humanos , Hidrólise , Iminas/química , Cetonas/química , Cetonas/metabolismo , Redes e Vias Metabólicas , Ribonucleases/química
6.
Proc Natl Acad Sci U S A ; 117(27): 15827-15836, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571911

RESUMO

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


Assuntos
Membrana Basal/metabolismo , Bromo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Animais , Biópsia , Bromatos/metabolismo , Brometos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Iminas/metabolismo , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Peroxidasina
7.
Acc Chem Res ; 54(5): 1209-1225, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491448

RESUMO

Despite the astonishing diversity of naturally occurring biocatalytic processes, enzymes do not catalyze many of the transformations favored by synthetic chemists. Either nature does not care about the specific products, or if she does, she has adopted a different synthetic strategy. In many cases, the appropriate reagents used by synthetic chemists are not readily accessible to biological systems. Here, we discuss our efforts to expand the catalytic repertoire of enzymes to encompass powerful reactions previously known only in small-molecule catalysis: formation and transfer of reactive carbene and nitrene intermediates leading to a broad range of products, including products with bonds not known in biology. In light of the structural similarity of iron carbene (Fe═C(R1)(R2)) and iron nitrene (Fe═NR) to the iron oxo (Fe═O) intermediate involved in cytochrome P450-catalyzed oxidation, we have used synthetic carbene and nitrene precursors that biological systems have not encountered and repurposed P450s to catalyze reactions that are not known in the natural world. The resulting protein catalysts are fully genetically encoded and function in intact microbial cells or cell-free lysates, where their performance can be improved and optimized by directed evolution. By leveraging the catalytic promiscuity of P450 enzymes, we evolved a range of carbene and nitrene transferases exhibiting excellent activity toward these new-to-nature reactions. Since our initial report in 2012, a number of other heme proteins including myoglobins, protoglobins, and cytochromes c have also been found and engineered to promote unnatural carbene and nitrene transfer. Due to the altered active-site environments, these heme proteins often displayed complementary activities and selectivities to P450s.Using wild-type and engineered heme proteins, we and others have described a range of selective carbene transfer reactions, including cyclopropanation, cyclopropenation, Si-H insertion, B-H insertion, and C-H insertion. Similarly, a variety of asymmetric nitrene transfer processes including aziridination, sulfide imidation, C-H amidation, and, most recently, C-H amination have been demonstrated. The scopes of these biocatalytic carbene and nitrene transfer reactions are often complementary to the state-of-the-art processes based on small-molecule transition-metal catalysts, making engineered biocatalysts a valuable addition to the synthetic chemist's toolbox. Moreover, enabled by the exquisite regio- and stereocontrol imposed by the enzyme catalyst, this biocatalytic platform provides an exciting opportunity to address challenging problems in modern synthetic chemistry and selective catalysis, including ones that have eluded synthetic chemists for decades.


Assuntos
Hemeproteínas/metabolismo , Iminas/metabolismo , Metano/análogos & derivados , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Hemeproteínas/química , Iminas/química , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Metano/química , Metano/metabolismo , Estrutura Molecular
8.
Chem Res Toxicol ; 35(9): 1493-1502, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35994611

RESUMO

Omeprazole (OPZ) is a proton pump inhibitor commonly used for the treatment of gastric acid hypersecretion. Studies have revealed that use of OPZ can induce hepatotoxicity, but the mechanisms by which it induces liver injury are unclear. This study aimed to identify reactive metabolites of OPZ, determine the pathways of the metabolic activation, and define the correlation of the bioactivation with OPZ cytotoxicity. Quinone imine-derived glutathione (GSH), N-acetylcysteine (NAC), and cysteine (Cys) conjugates were detected in OPZ-fortified rat and human liver microsomal incubations captured with GSH, NAC, or Cys. The same GSH conjugates were detected in bile of rats and cultured liver primary cells after exposure to OPZ. Similarly, the same NAC conjugates were detected in urine of OPZ-treated rats. The resulting quinone imine was found to react with Cys residues of hepatic protein. CYP3A4 dominated the metabolic activation of OPZ. Exposure to OPZ resulted in decreased cell survival in cultured primary hepatocytes. Pretreatment with ketoconazole attenuated the susceptibility of hepatocytes to the cytotoxicity of OPZ.


Assuntos
Citocromo P-450 CYP3A , Omeprazol , Acetilcisteína/metabolismo , Ativação Metabólica , Animais , Benzoquinonas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glutationa/metabolismo , Humanos , Iminas/metabolismo , Cetoconazol/metabolismo , Microssomos Hepáticos/metabolismo , Omeprazol/metabolismo , Omeprazol/farmacologia , Inibidores da Bomba de Prótons/metabolismo , Ratos
9.
Chembiochem ; 22(2): 317-318, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33174653

RESUMO

Biocatalysis is a continuously expanding subfield in chemical biology. Herein, I describe two categories of biocatalysts, the LEGO-brick-like and game-console-like type, both of which can streamline the synthetic routes to therapeutics. A multi-disciplinary approach to expand the biocatalytic toolkit will open up opportunities to develop new therapeutics.


Assuntos
Iminas/metabolismo , Oxirredutases/metabolismo , Biocatálise , Iminas/química , Estrutura Molecular , Oxirredutases/química
10.
Angew Chem Int Ed Engl ; 60(45): 24059-24063, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490955

RESUMO

Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor-independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2-chloromalonate to α,ß-unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon-carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo- and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non-natural reactions.


Assuntos
Ciclopropanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos c/metabolismo , Iminas/metabolismo , Mioglobina/metabolismo , Biocatálise , Ciclopropanos/química , Iminas/química , Íons/química , Íons/metabolismo , Engenharia de Proteínas
11.
Angew Chem Int Ed Engl ; 60(16): 8717-8721, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33555620

RESUMO

N-Substituted α-amino esters are widely used as chiral intermediates in a range of pharmaceuticals. Here we report the enantioselective biocatalyic synthesis of N-substituted α-amino esters through the direct reductive coupling of α-ketoesters and amines employing sequence diverse metagenomic imine reductases (IREDs). Both enantiomers of N-substituted α-amino esters were obtained with high conversion and excellent enantioselectivity under mild reaction conditions. In addition >20 different preparative scale transformations were performed highlighting the scalability of this system.


Assuntos
Aminoácidos/biossíntese , Ésteres/metabolismo , Iminas/metabolismo , Cetonas/metabolismo , Oxirredutases/metabolismo , Aminação , Aminoácidos/química , Ésteres/química , Iminas/química , Cetonas/química , Estrutura Molecular , Oxirredução , Oxirredutases/química
12.
Biochem Biophys Res Commun ; 522(3): 585-591, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31785813

RESUMO

The RidA subfamily proteins catalyze the deamination reaction of enamine/imine intermediates, which are metabolites of amino acids such as threonine and serine. Numerous structural and functional studies have been conducted on RidA isolated from mesophiles and thermophiles. However, little is known about the structure of the RidA proteins isolated from psychrophiles. In the present study, we elucidated the crystal structure of RidA from the Antarctic bacterium Psychrobacter sp. PAMC 21119 (Pp-RidA) at 1.6 Å resolution to identify the structural properties contributing to cold-adaptability. Although the overall structure of Pp-RidA is similar to those of its homologues, it exhibits specific structural arrangements of a loop positioned near the active site, which is assumed to play a role in covering the active site of catalysis. In addition, the surface electrostatic potential of Pp-RidA suggested that it exhibits stronger electrostatic distribution relative to its homologues. Our results provide novel insights into the key determinants of cold-adaptability.


Assuntos
Aminoidrolases/química , Proteínas de Bactérias/química , Psychrobacter/química , Aclimatação , Sequência de Aminoácidos , Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Resposta ao Choque Frio , Cristalografia por Raios X , Desaminação , Iminas/metabolismo , Conformação Proteica , Psychrobacter/enzimologia , Psychrobacter/fisiologia
13.
Chembiochem ; 21(18): 2689-2695, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32311225

RESUMO

The enzymatic, asymmetric reduction of imines is catalyzed by imine reductases (IREDs), members of the short-chain dehydrogenase/reductase (SDR) family, and ß-hydroxy acid dehydrogenase (ßHAD) variants. Systematic evaluation of the structures and substrate-binding sites of the three enzyme families has revealed four common principles for imine reduction: structurally conserved cofactor-binding domains; tyrosine, aspartate, or glutamate as proton donor; at least four characteristic flanking residues that adapt the donor's pKa and polarize the substrate; and a negative electrostatic potential in the substrate-binding site to stabilize the transition state. As additional catalytically relevant positions, we propose alternative proton donors in IREDs and ßHADs as well as proton relays in IREDs, ßHADs, and SDRs. The functional role of flanking residues was experimentally confirmed by alanine scanning of the imine-reducing SDR from Zephyranthes treatiae. Mutating the "gatekeeping" phenylalanine at standard position 200 resulted in a tenfold increase in imine-reducing activity.


Assuntos
Iminas/metabolismo , Oxirredutases/metabolismo , Iminas/química , Oxirredutases/química
14.
Chembiochem ; 21(24): 3511-3514, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939899

RESUMO

The ß-hydroxyacid dehydrogenase from Thermocrinus albus (Ta-ßHAD), which catalyzes the NADP+ -dependent oxidation of ß-hydroxyacids, was engineered to accept imines as substrates. The catalytic activity of the proton-donor variant K189D was further increased by the introduction of two nonpolar flanking residues (N192 L, N193 L). Engineering the putative alternative proton donor (D258S) and the gate-keeping residue (F250 A) led to a switched substrate specificity as compared to the single and triple variants. The two most active Ta-ßHAD variants were applied to biocatalytic asymmetric reductions of imines at elevated temperatures and enabled enhanced product formation at a reaction temperature of 50 °C.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Iminas/metabolismo , Engenharia de Proteínas , Temperatura , Bactérias/enzimologia , Desidrogenases de Carboidrato/química , Estabilidade Enzimática , Iminas/química , Modelos Moleculares , Estrutura Molecular , Oxirredução
15.
Chembiochem ; 21(18): 2615-2619, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32315494

RESUMO

The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.


Assuntos
Iminas/metabolismo , Cetonas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Asparagus/enzimologia , Iminas/química , Cetonas/química , Methylobacterium/enzimologia , Modelos Moleculares , Estrutura Molecular , Oxirredução , Redutases-Desidrogenases de Cadeia Curta/química
16.
Chembiochem ; 21(14): 1981-1987, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32189465

RESUMO

Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Iminas/metabolismo , Metaloproteínas/metabolismo , Aminação , Biocatálise , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/isolamento & purificação , Iminas/química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
17.
Chem Rev ; 118(1): 142-231, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28714313

RESUMO

The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.


Assuntos
Metaloproteínas/metabolismo , Alquilação , Animais , Biocatálise , Humanos , Hidrogenação , Iminas/química , Iminas/metabolismo , Cetonas/química , Cetonas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Engenharia de Proteínas
18.
Bioorg Chem ; 94: 103377, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31662211

RESUMO

Enzyme catalytic promiscuity is the ability of a single enzyme active site to catalyze several chemical transformations, among them those which are different from natural. We have attempted to use this feature of enzymes in the nucleophilic addition of nitromethane to aldimines (the aza-Henry reaction) whose chemically catalyzed version leads to synthetically useful ß-nitroamines. We succeded in obtaining for the first time the desired products in the yields up to 81%. The most efficient proved lipase TL (from Pseudomonas stutzeri) and oxynitrilase from Arabidopsis thaliana. However, all the reactions investigated were non-stereoselective.


Assuntos
Aldeído Liases/metabolismo , Iminas/metabolismo , Lipase/metabolismo , Metano/análogos & derivados , Nitroparafinas/metabolismo , Aldeído Liases/química , Arabidopsis/enzimologia , Biocatálise , Iminas/química , Lipase/química , Metano/química , Metano/metabolismo , Estrutura Molecular , Nitroparafinas/química , Pseudomonas stutzeri/enzimologia
19.
Angew Chem Int Ed Engl ; 59(12): 4942-4946, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31820844

RESUMO

[Fe]-hydrogenase is an efficient biological hydrogenation catalyst. Despite intense research, Fe complexes mimicking the active site of [Fe]-hydrogenase have not achieved turnovers in hydrogenation reactions. Herein, we describe the design and development of a manganese(I) mimic of [Fe]-hydrogenase. This complex exhibits the highest activity and broadest scope in catalytic hydrogenation among known mimics. Thanks to its biomimetic nature, the complex exhibits unique activity in the hydrogenation of compounds analogous to methenyl-H4 MPT+ , the natural substrate of [Fe]-hydrogenase. This activity enables asymmetric relay hydrogenation of benzoxazinones and benzoxazines, involving the hydrogenation of a chiral hydride transfer agent using our catalyst coupled to Lewis acid-catalyzed hydride transfer from this agent to the substrates.


Assuntos
Materiais Biomiméticos/metabolismo , Complexos de Coordenação/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Manganês/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Biocatálise , Materiais Biomiméticos/química , Complexos de Coordenação/química , Cristalografia por Raios X , Hidrogenase/química , Hidrogenação , Iminas/química , Iminas/metabolismo , Proteínas Ferro-Enxofre/química , Cetonas/química , Cetonas/metabolismo , Manganês/química , Modelos Moleculares , Estrutura Molecular
20.
J Am Chem Soc ; 141(51): 20187-20197, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31789030

RESUMO

Mimicking cellular transport mechanisms to make solid-state smart nanochannels has long been of great interest for their diverse applications, but it poses a critical synthetic challenge. Covalent organic frameworks (COFs) are porous crystalline materials with tailor-made nanochannels and hold great potential for ion and molecule transport. We demonstrate here for the first time that 2D COFs possess the necessary merits to be promising solid-state nanochannels for selective transport of amino acids, which are the basis for life. By imine condensations of a C3-symmetric trialdehyde and a mixture of diamines with and without divinyl groups, two vinyl-functionalized 2D COFs are crystallized. Both multivariant COFs afford straight 1D mesoporous channels formed by AA or AB stacking of layered hexagonal networks. After postmodification with chiral ß-cyclodextrin (ß-CD) via thiol-ene click reactions, the COFs are further fabricated into free-standing mixed matrix membranes (MMMs) that can selectively transport amino acids, as revealed by monitoring not only transmembrane ionic current signature but also concentration changes of permeated substrates. Specially, in the membrane system, the AA stacked COF exhibits higher chiral recognition capability toward histidine enantiomers than the AB stacked COF because of its uniform open channels decorated with ß-CD. This work highlights the great potential of COF nanochannels as a platform for accumulating functional groups for selective transport of small molecules and even biomolecules in the solid state.


Assuntos
Aldeídos/metabolismo , Aminoácidos/metabolismo , Diaminas/metabolismo , Iminas/metabolismo , Nanotecnologia , Aldeídos/química , Aminoácidos/química , Transporte Biológico , Diaminas/química , Iminas/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA