Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 172(3): 500-515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584001

RESUMO

Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.


Assuntos
Tolerância Imunológica , Pulmão , Receptores CXCR3 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Receptores CXCR3/metabolismo , Camundongos , Pulmão/imunologia , Pulmão/virologia , Feminino , Infecções por Pneumovirus/imunologia , Camundongos Endogâmicos C57BL , Linfonodos/imunologia , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Animais Recém-Nascidos
2.
J Immunol ; 202(3): 871-882, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578308

RESUMO

Severe respiratory virus infections feature robust local host responses that contribute to disease severity. Immunomodulatory strategies that limit virus-induced inflammation may be of critical importance, notably in the absence of antiviral vaccines. In this study, we examined the role of the pleiotropic cytokine IL-6 in acute infection with pneumonia virus of mice (PVM), a natural rodent pathogen that is related to respiratory syncytial virus and that generates local inflammation as a feature of severe infection. In contrast to Influenza A, PVM is substantially less lethal in IL-6 -/- mice than it is in wild-type, a finding associated with diminished neutrophil recruitment and reduced fluid accumulation in lung tissue. Ly6Chi proinflammatory monocytes are recruited in response to PVM via a CCR2-dependent mechanism, but they are not a major source of IL-6 nor do they contribute to lethal sequelae of infection. By contrast, alveolar macrophages are readily infected with PVM in vivo; ablation of alveolar macrophages results in prolonged survival in association with a reduction in virus-induced IL-6. Finally, as shown previously, administration of immunobiotic Lactobacillus plantarum to the respiratory tracts of PVM-infected mice promoted survival in association with diminished levels of IL-6. We demonstrated in this study that IL-6 suppression is a critical feature of the protective mechanism; PVM-infected IL-6 -/- mice responded to low doses of L. plantarum, and administration of IL-6 overcame L. plantarum-mediated protection in PVM-infected wild-type mice. Taken together, these results connect the actions of IL-6 to PVM pathogenesis and suggest cytokine blockade as a potential therapeutic modality in severe infection.


Assuntos
Interleucina-6/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Animais , Inflamação , Interleucina-6/farmacologia , Lactobacillus plantarum/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Probióticos/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia
3.
J Immunol ; 200(2): 632-642, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212906

RESUMO

A link between inflammatory disease and bone loss is now recognized. However, limited data exist on the impact of virus infection on bone loss and regeneration. Bone loss results from an imbalance in remodeling, the physiological process whereby the skeleton undergoes continual cycles of formation and resorption. The specific molecular and cellular mechanisms linking virus-induced inflammation to bone loss remain unclear. In the current study, we provide evidence that infection of mice with either lymphocytic choriomeningitis virus (LCMV) or pneumonia virus of mice (PVM) resulted in rapid and substantial loss of osteoblasts from the bone surface. Osteoblast ablation was associated with elevated levels of circulating inflammatory cytokines, including TNF-α, IFN-γ, IL-6, and CCL2. Both LCMV and PVM infections resulted in reduced osteoblast-specific gene expression in bone, loss of osteoblasts, and reduced serum markers of bone formation, including osteocalcin and procollagen type 1 N propeptide. Infection of Rag-1-deficient mice (which lack adaptive immune cells) or specific depletion of CD8+ T lymphocytes limited osteoblast loss associated with LCMV infection. By contrast, CD8+ T cell depletion had no apparent impact on osteoblast ablation in association with PVM infection. In summary, our data demonstrate dramatic loss of osteoblasts in response to virus infection and associated systemic inflammation. Further, the inflammatory mechanisms mediating viral infection-induced bone loss depend on the specific inflammatory condition.


Assuntos
Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Pneumonia Murina/imunologia , Osteoblastos/virologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Animais , Biomarcadores , Medula Óssea/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Proteínas de Homeodomínio/genética , Depleção Linfocítica , Camundongos , Camundongos Knockout , Osteoblastos/imunologia , Osteogênese
4.
Nature ; 501(7467): 439-43, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23955151

RESUMO

Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel ß-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Reações Cruzadas/imunologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Paramyxoviridae/classificação , Paramyxoviridae/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Especificidade de Anticorpos/imunologia , Bovinos , Epitopos/imunologia , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Metapneumovirus/imunologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Vírus da Pneumonia Murina/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/terapia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/prevenção & controle , Infecções por Pneumovirus/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/terapia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Bovino/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia
5.
J Allergy Clin Immunol ; 141(5): 1607-1619.e9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28947081

RESUMO

BACKGROUND: Rhinovirus infection triggers acute asthma exacerbations. IL-33 is an instructive cytokine of type 2 inflammation whose expression is associated with viral load during experimental rhinovirus infection of asthmatic patients. OBJECTIVE: We sought to determine whether anti-IL-33 therapy is effective during disease progression, established disease, or viral exacerbation using a preclinical model of chronic asthma and in vitro human primary airway epithelial cells (AECs). METHODS: Mice were exposed to pneumonia virus of mice and cockroach extract in early and later life and then challenged with rhinovirus to model disease onset, progression, and chronicity. Interventions included anti-IL-33 or dexamethasone at various stages of disease. AECs were obtained from asthmatic patients and healthy subjects and treated with anti-IL-33 after rhinovirus infection. RESULTS: Anti-IL-33 decreased type 2 inflammation in all phases of disease; however, the ability to prevent airway smooth muscle growth was lost after the progression phase. After the chronic phase, IL-33 levels were persistently high, and rhinovirus challenge exacerbated the type 2 inflammatory response. Treatment with anti-IL-33 or dexamethasone diminished exacerbation severity, and anti-IL-33, but not dexamethasone, promoted antiviral interferon expression and decreased viral load. Rhinovirus replication was higher and IFN-λ levels were lower in AECs from asthmatic patients compared with those from healthy subjects. Anti-IL-33 decreased rhinovirus replication and increased IFN-λ levels at the gene and protein levels. CONCLUSION: Anti-IL-33 or dexamethasone suppressed the magnitude of type 2 inflammation during a rhinovirus-induced acute exacerbation; however, only anti-IL-33 boosted antiviral immunity and decreased viral replication. The latter phenotype was replicated in rhinovirus-infected human AECs, suggesting that anti-IL-33 therapy has the additional benefit of enhancing host defense.


Assuntos
Antivirais/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Inflamação/imunologia , Interleucina-33/imunologia , Vírus da Pneumonia Murina/efeitos dos fármacos , Vírus da Pneumonia Murina/imunologia , Animais , Antivirais/imunologia , Asma/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamação/tratamento farmacológico , Inflamação/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pneumovirus/tratamento farmacológico , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
6.
Vet Res ; 49(1): 118, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518406

RESUMO

The presence of pneumoviruses in pigs is poorly documented. In this study, we used the published sequence of the nucleoprotein (N) of the recently identified Swine Orthopneumovirus (SOV) to express and purify SOV N as a recombinant protein in Escherichia coli. This protein was purified as nanorings and used to set up an enzyme-linked immunosorbent assay, which was used to analyse the presence of anti-pneumovirus N antibodies in swine sera. Sera collected from different pig farms in the West of France and from specific pathogen free piglets before colostrum uptake showed indirectly that a pneumovirus is circulating in pig populations with some variations between animals. Piglets before colostrum uptake were sero-negative for anti-pneumovirus antibodies while most of the other pigs showed positivity. Interestingly, in two farms presenting respiratory clinical signs and negative or under control for some common respiratory pathogens, pigs were detected positive for anti-pneumovirus antibodies. Globally, anti-pneumovirus N antibody concentrations were variable between and within farms. Further studies will aim to isolate the circulating virus and determine its potential pathogenicity. SOV could potentially become a new member of the porcine respiratory complex, important on its own or in association with other viral and bacterial micro-organisms.


Assuntos
Anticorpos Antivirais/sangue , Proteínas do Nucleocapsídeo/sangue , Infecções por Pneumovirus/veterinária , Pneumovirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Colostro , Ensaio de Imunoadsorção Enzimática/veterinária , Escherichia coli/genética , França , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Proteínas Recombinantes/análise , Análise de Sequência de RNA/veterinária , Organismos Livres de Patógenos Específicos , Suínos , Doenças dos Suínos/imunologia
7.
J Allergy Clin Immunol ; 138(5): 1326-1337, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27236500

RESUMO

BACKGROUND: Frequent viral lower respiratory infections in early life are an independent risk factor for asthma onset. This risk and the development of persistent asthma are significantly greater in children who later become sensitized. OBJECTIVE: We sought to elucidate the pathogenic processes that underlie the synergistic interplay between allergen exposures and viral infections. METHODS: Mice were inoculated with a murine-specific Pneumovirus species (pneumonia virus of mice [PVM]) and exposed to low-dose cockroach extract (CRE) in early and later life, and airway inflammation, remodeling, and hyperreactivity assessed. Mice were treated with anti-IL-33 or apyrase to neutralize or block IL-33 release. RESULTS: PVM infection or CRE exposure alone did not induce disease, whereas PVM/CRE coexposure acted synergistically to induce the hallmark features of asthma. CRE exposure during viral infection in early life induced a biphasic IL-33 response and impaired IFN-α and IFN-λ production, which in turn increased epithelial viral burden, airway smooth muscle growth, and type 2 inflammation. These features were ameliorated when CRE-induced IL-33 release was blocked or neutralized, whereas substitution of CRE with exogenous IL-33 recapitulated the phenotype observed in PVM/CRE-coexposed mice. Mechanistically, IL-33 downregulated viperin and interferon regulatory factor 7 gene expression and rapidly degraded IL-1 receptor-associated kinase 1 expression in plasmacytoid dendritic cells both in vivo and in vitro, leading to Toll-like receptor 7 hyporesponsiveness and impaired IFN-α production. CONCLUSION: We identified a hitherto unrecognized function of IL-33 as a potent suppressor of innate antiviral immunity and demonstrate that IL-33 contributes significantly to the synergistic interplay between respiratory virus and allergen exposures in the onset and progression of asthma.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Baratas , Citocinas/imunologia , Proteínas de Insetos/imunologia , Vírus da Pneumonia Murina , Infecções por Pneumovirus/imunologia , Poluentes Atmosféricos/imunologia , Animais , Asma/virologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Células Dendríticas/imunologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Infecções por Pneumovirus/virologia , Carga Viral
8.
Blood ; 123(5): 609-11, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24482499

RESUMO

In this issue of Blood, Percopo et al provide intriguing new evidence supporting a role for eosinophils in protecting mice against the lethal effects of respiratory virus infection.


Assuntos
Eosinófilos/imunologia , Pulmão/imunologia , Pulmão/virologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Animais , Feminino , Masculino
9.
Blood ; 123(5): 743-52, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24297871

RESUMO

Eosinophils are recruited to the airways as a prominent feature of the asthmatic inflammatory response where they are broadly perceived as promoting pathophysiology. Respiratory virus infections exacerbate established asthma; however, the role of eosinophils and the nature of their interactions with respiratory viruses remain uncertain. To explore these questions, we established acute infection with the rodent pneumovirus, pneumonia virus of mice (PVM), in 3 distinct mouse models of Th2 cytokine-driven asthmatic inflammation. We found that eosinophils recruited to the airways of otherwise naïve mice in response to Aspergillus fumigatus, but not ovalbumin sensitization and challenge, are activated by and degranulate specifically in response to PVM infection. Furthermore, we demonstrate that activated eosinophils from both Aspergillus antigen and cytokine-driven asthma models are profoundly antiviral and promote survival in response to an otherwise lethal PVM infection. Thus, although activated eosinophils within a Th2-polarized inflammatory response may have pathophysiologic features, they are also efficient and effective mediators of antiviral host defense.


Assuntos
Eosinófilos/imunologia , Pulmão/imunologia , Pulmão/virologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Animais , Aspergillus fumigatus/imunologia , Asma/imunologia , Asma/microbiologia , Degranulação Celular , Eosinófilos/fisiologia , Eosinófilos/virologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
10.
J Immunol ; 193(8): 4072-82, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25200951

RESUMO

Respiratory virus infections are often pathogenic, driving severe inflammatory responses. Most research has focused on localized effects of virus infection and inflammation. However, infection can induce broad-reaching, systemic changes that are only beginning to be characterized. In this study, we assessed the impact of acute pneumovirus infection in C57BL/6 mice on bone marrow hematopoiesis. We hypothesized that inflammatory cytokine production in the lung upregulates myeloid cell production in response to infection. We demonstrate a dramatic increase in the percentages of circulating myeloid cells, which is associated with pronounced elevations in inflammatory cytokines in serum (IFN-γ, IL-6, CCL2), bone (TNF-α), and lung tissue (TNF-α, IFN-γ, IL-6, CCL2, CCL3, G-CSF, osteopontin). Increased hematopoietic stem/progenitor cell percentages (Lineage(-)Sca-I(+)c-kit(+)) were also detected in the bone marrow. This increase was accompanied by an increase in the proportions of committed myeloid progenitors, as determined by colony-forming unit assays. However, no functional changes in hematopoietic stem cells occurred, as assessed by competitive bone marrow reconstitution. Systemic administration of neutralizing Abs to either TNF-α or IFN-γ blocked expansion of myeloid progenitors in the bone marrow and also limited virus clearance from the lung. These findings suggest that acute inflammatory cytokines drive production and differentiation of myeloid cells in the bone marrow by inducing differentiation of committed myeloid progenitors. Our findings provide insight into the mechanisms via which innate immune responses regulate myeloid cell progenitor numbers in response to acute respiratory virus infection.


Assuntos
Diferenciação Celular/imunologia , Citocinas/imunologia , Células Progenitoras Mieloides/citologia , Infecções por Pneumovirus/imunologia , Pneumovirus , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Células da Medula Óssea/citologia , Proliferação de Células , Citocinas/sangue , Hematopoese , Imunidade Inata , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Interferon gama/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
11.
J Immunol ; 192(11): 5265-72, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24748495

RESUMO

We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient µMT mice or Jh mice, and Lactobacillus-primed µMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed µMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient µMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.


Assuntos
Linfócitos B/imunologia , Lactobacillus/imunologia , Pulmão/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Mucosa Respiratória/imunologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Citocinas/genética , Citocinas/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumovirus/genética , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia
12.
J Virol ; 88(11): 6281-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672024

RESUMO

UNLABELLED: The cytokine storm is an intensified, dysregulated, tissue-injurious inflammatory response driven by cytokine and immune cell components. The cytokine storm during influenza virus infection, whereby the amplified innate immune response is primarily responsible for pulmonary damage, has been well characterized. Now we describe a novel event where virus-specific T cells induce a cytokine storm. The paramyxovirus pneumonia virus of mice (PVM) is a model of human respiratory syncytial virus (hRSV). Unexpectedly, when C57BL/6 mice were infected with PVM, the innate inflammatory response was undetectable until day 5 postinfection, at which time CD8(+) T cells infiltrated into the lung, initiating a cytokine storm by their production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Administration of an immunomodulatory sphingosine-1-phosphate (S1P) receptor 1 (S1P1R) agonist significantly inhibited PVM-elicited cytokine storm by blunting the PVM-specific CD8(+) T cell response, resulting in diminished pulmonary disease and enhanced survival. IMPORTANCE: A dysregulated overly exuberant immune response, termed a "cytokine storm," accompanies virus-induced acute respiratory diseases (VARV), is primarily responsible for the accompanying high morbidity and mortality, and can be controlled therapeutically in influenza virus infection of mice and ferrets by administration of sphingosine-1-phosphate 1 receptor (S1P1R) agonists. Here, two novel findings are recorded. First, in contrast to influenza infection, where the cytokine storm is initiated early by the innate immune system, for pneumonia virus of mice (PVM), a model of RSV, the cytokine storm is initiated late in infection by the adaptive immune response: specifically, by virus-specific CD8 T cells via their release of IFN-γ and TNF-α. Blockading these cytokines with neutralizing antibodies blunts the cytokine storm and protects the host. Second, PVM infection is controlled by administration of an S1P1R agonist.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Vírus da Pneumonia Murina , Infecções por Pneumovirus/imunologia , Vírus Sinciciais Respiratórios , Animais , Anticorpos/administração & dosagem , Citocinas/metabolismo , Citometria de Fluxo , Imunoglobulina G , Interferon gama/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Esfingosina-1-Fosfato , Fator de Necrose Tumoral alfa/imunologia
13.
J Virol ; 87(20): 11267-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946463

RESUMO

Cytotoxic T cells (CTL) play a critical role in the clearance of respiratory viral infections, but they also contribute to disease manifestations. In this study, we infected mice with a genetically modified pneumonia virus of mice (PVM) that allowed visualization of virus-specific CTL and infected cells in situ. The first virus-specific T cells entered the lung via blood vessels in the scattered foci of PVM-infected cells, which densely clustered around the bronchi at day 7 after infection. At this time, overall pulmonary virus load was maximal, but the mice showed no overt signs of disease. On days 8 to 9, T cells gained access to the infected bronchial epithelium and to the lung interstitium, which was associated with a reduction in the number of virus-infected cells within the initial clusters but could not prevent further virus spread throughout the lung tissue. Interestingly, recruitment of virus-specific CTL throughout the parenchyma was still ongoing on day 10, when the virus infection was already largely controlled. This also represented the peak of clinical disease. Thus, disease was associated with an exuberant T cell infiltration late in the course of the infection, which may be required to completely eliminate virus at residual foci of infection. PVM-induced immunopathology may thus result from the need to generate widespread T cell infiltrates to complete the elimination of virus-infected cells in a large organ like the lung. This experimental model provides the first insights into the spatiotemporal evolution of pulmonary antiviral T cell immunity in vivo.


Assuntos
Pulmão/imunologia , Pulmão/patologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pneumovirus/virologia , Fatores de Tempo , Carga Viral
14.
J Virol ; 87(17): 9949-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824814

RESUMO

The paramyxovirus pneumonia virus of mice (PVM) is a rodent model of human respiratory syncytial virus (hRSV) pathogenesis. Here we characterized the PVM-specific CD8(+) T-cell repertoire in susceptible C57BL/6 mice. In total, 15 PVM-specific CD8(+) T-cell epitopes restricted by H-2D(b) and/or H-2K(b) were identified. These data open the door for using widely profiled, genetically manipulated C57BL/6 mice to study the contribution of epitope-specific CD8(+) T cells to PVM pathogenesis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Vírus da Pneumonia Murina/imunologia , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos de Linfócito T/genética , Antígenos H-2/metabolismo , Antígeno de Histocompatibilidade H-2D/metabolismo , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia
15.
J Immunol ; 188(4): 1924-32, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22238461

RESUMO

IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.


Assuntos
Interleucinas/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/imunologia , Interleucina-6/biossíntese , Interleucina-6/deficiência , Interleucinas/biossíntese , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vírus da Pneumonia Murina/patogenicidade , Receptores de Interleucina-21/imunologia , Células Th17/imunologia
16.
J Allergy Clin Immunol ; 131(5): 1331-9.e10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23561801

RESUMO

BACKGROUND: Respiratory tract viruses are a major environmental risk factor for both the inception and exacerbations of asthma. Genetic defects in Toll-like receptor (TLR) 7-mediated signaling, impaired type I interferon responses, or both have been reported in asthmatic patients, although their contribution to the onset and exacerbation of asthma remains poorly understood. OBJECTIVE: We sought to determine whether Pneumovirus infection in the absence of TLR7 predisposes to bronchiolitis and the inception of asthma. METHODS: Wild-type and TLR7-deficient (TLR7(-/-)) mice were inoculated with the rodent-specific pathogen pneumonia virus of mice at 1 (primary), 7 (secondary), and 13 (tertiary) weeks of age, and pathologic features of bronchiolitis or asthma were assessed. In some experiments infected mice were exposed to low-dose cockroach antigen. RESULTS: TLR7 deficiency increased viral load in the airway epithelium, which became sloughed and necrotic, and promoted an IFN-α/ß(low), IL-12p70(low), IL-1ß(high), IL-25(high), and IL-33(high) cytokine microenvironment that was associated with the recruitment of type 2 innate lymphoid cells/nuocytes and increased TH2-type cytokine production. Viral challenge of TLR7(-/-) mice induced all of the cardinal pathophysiologic features of asthma, including tissue eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle alterations, and airways hyperreactivity in a memory CD4(+) T cell-dependent manner. Importantly, infections with pneumonia virus of mice promoted allergic sensitization to inhaled cockroach antigen in the absence but not the presence of TLR7. CONCLUSION: TLR7 gene defects and Pneumovirus infection interact to establish an aberrant adaptive response that might underlie virus-induced asthma exacerbations in later life.


Assuntos
Asma/imunologia , Asma/patologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Vírus da Pneumonia Murina , Infecções por Pneumovirus/complicações , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Animais , Animais Recém-Nascidos , Asma/etiologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Carga Viral
17.
J Virol ; 86(10): 5829-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438539

RESUMO

Pneumonia virus of mice (PVM), a relative of human respiratory syncytial virus (RSV), causes respiratory disease in mice. There is serologic evidence suggesting widespread exposure of humans to PVM. To investigate replication in primates, African green monkeys (AGM) and rhesus macaques (n = 4) were inoculated with PVM by the respiratory route. Virus was shed intermittently at low levels by a subset of animals, suggesting poor permissiveness. PVM efficiently replicated in cultured human cells and inhibited the type I interferon (IFN) response in these cells. This suggests that poor replication in nonhuman primates was not due to a general nonpermissiveness of primate cells or poor control of the IFN response. Seroprevalence in humans was examined by screening sera from 30 adults and 17 young children for PVM-neutralizing activity. Sera from a single child (6%) and 40% of adults had low neutralizing activity against PVM, which could be consistent with increasing incidence of exposure following early childhood. There was no cross-reaction of human or AGM sera between RSV and PVM and no cross-protection in the mouse model. In native Western blots, human sera reacted with RSV but not PVM proteins under conditions in which AGM immune sera reacted strongly. Serum reactivity was further evaluated by flow cytometry using unfixed Vero cells infected with PVM or RSV expressing green fluorescent protein (GFP) as a measure of viral gene expression. The reactivity of human sera against RSV-infected cells correlated with GFP expression, whereas reactivity against PVM-infected cells was low and uncorrelated with GFP expression. Thus, PVM specificity was not evident. Our results indicate that the PVM-neutralizing activity of human sera is not due to RSV- or PVM-specific antibodies but may be due to low-affinity, polyreactive natural antibodies of the IgG subclass. The absence of PVM-specific antibodies and restriction in nonhuman primates makes PVM unlikely to be a human pathogen.


Assuntos
Vírus da Pneumonia Murina/fisiologia , Infecções por Pneumovirus/virologia , Replicação Viral , Adulto , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Pré-Escolar , Chlorocebus aethiops , Proteção Cruzada , Feminino , Humanos , Lactente , Macaca mulatta , Masculino , Camundongos , Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/fisiologia , Adulto Jovem
18.
PLoS Pathog ; 7(11): e1002358, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072972

RESUMO

Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.


Assuntos
Fatores Quimiotáticos/metabolismo , Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vírus da Pneumonia Murina/imunologia , Pneumonia Viral/imunologia , Infecções por Pneumovirus/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocinas , Fatores Quimiotáticos/biossíntese , Células Dendríticas/metabolismo , Mediadores da Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Interferon Tipo I/biossíntese , Interferon Tipo I/deficiência , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/metabolismo , Vírus da Pneumonia Murina/patogenicidade , Pneumonia Viral/metabolismo , Infecções por Pneumovirus/metabolismo , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Carga Viral
19.
J Immunol ; 186(10): 5938-48, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21482736

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Vírus da Pneumonia Murina/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Pneumovirus/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Imunidade Adaptativa , Transferência Adotiva , Animais , Interferons/genética , Interferons/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética
20.
J Immunol ; 186(2): 1151-61, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169550

RESUMO

The inflammatory response to respiratory virus infection can be complex and refractory to standard therapy. Lactobacilli, when targeted to the respiratory epithelium, are highly effective at suppressing virus-induced inflammation and protecting against lethal disease. Specifically, wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus plantarum or Lactobacillus reuteri were completely protected against lethal infection with the virulent rodent pathogen, pneumonia virus of mice; significant protection (60% survival) persisted for at least 13 wk. Protection was not unique to Lactobacillus species, and it was also observed in response to priming with nonpathogenic Gram-positive Listeria innocua. Priming with live lactobacilli resulted in diminished granulocyte recruitment, diminished expression of multiple proinflammatory cytokines (CXCL10, CXCL1, CCL2, and TNF), and reduced virus recovery, although we have demonstrated clearly that absolute virus titer does not predict clinical outcome. Lactobacillus priming also resulted in prolonged survival and protection against the lethal sequelae of pneumonia virus of mice infection in MyD88 gene-deleted (MyD88(-/-)) mice, suggesting that the protective mechanisms may be TLR-independent. Most intriguing, virus recovery and cytokine expression patterns in Lactobacillus-primed MyD88(-/-) mice were indistinguishable from those observed in control-primed MyD88(-/-) counterparts. In summary, we have identified and characterized an effective Lactobacillus-mediated innate immune shield, which may ultimately serve as critical and long-term protection against infection in the absence of specific antiviral vaccines.


Assuntos
Lactobacillus plantarum/imunologia , Limosilactobacillus reuteri/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/mortalidade , Infecções por Pneumovirus/prevenção & controle , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Administração Intranasal , Animais , Antígenos Virais/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Mucosa Respiratória/virologia , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA