Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(3): 1117-1143, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919703

RESUMO

Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Ligantes , Lipoxigenase/genética , Oxilipinas/metabolismo , Ácidos Fosfatídicos/metabolismo , Estresse Salino , Glycine max/genética , Glycine max/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
3.
BMC Plant Biol ; 24(1): 236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561660

RESUMO

BACKGROUND: Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS: Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS: Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Reguladores de Crescimento de Plantas , Hormônios , Estresse Fisiológico/genética
4.
Biochemistry ; 62(20): 2982-2996, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788430

RESUMO

Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Proteínas/metabolismo , Conformação Molecular , Acil Coenzima A/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
5.
FASEB J ; 36(7): e22367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639422

RESUMO

Diazepam binding inhibitor (DBI)-translocator protein (18kDa) (TSPO) signaling in the retina was reported to possess coordinated macroglia-microglia interactions. We investigated DBI-TSPO signaling and its correlation with vascular endothelial growth factor (VEGF), neurotrophic or inflammatory cytokines in neovascular retinopathy, and under hypoxic conditions. The vitreous expression of DBI, VEGF, nerve growth factor (NGF), and interleukin-1beta (IL-1ß) were examined in proliferative diabetic retinopathy (PDR) patients with or without anti-VEGF therapy and nondiabetic controls. Retinal DBI-TSPO signaling and the effect of the anti-VEGF agent were evaluated in a mouse model of oxygen-induced retinopathy (OIR). Interactions between Müller cell-derived VEGF and DBI, as well as cocultured microglial cells under hypoxic conditions, were studied, using Western blot, real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunofluorescent labeling. Results showed that vitreous levels of DBI, VEGF, NGF, and IL-1ß were significantly higher in PDR patients compared with controls, which further changed after anti-VEGF therapy. A statistical association was found between vitreous DBI and VEGF, NGF, IL-1ß, and age. The application of the anti-VEGF agent in the OIR model induced retinal expression of DBI and NGF, and attenuated inflammation and microglial cell activation. Inhibition of Müller cell-derived VEGF could increase its DBI expression under hypoxic conditions, while the DBI-TSPO signaling pathway is essential for anti-VEGF agents exerting anti-inflammatory and neuroprotective effects, as well as limiting inflammatory magnitude, promoting its neurotrophin production and anti-inflammatory (M2) polarization in microglial cells. These findings suggest the beneficial effect of anti-VEGF therapy on inflammation and neurotrophy of retinal glial cells through modulation of the DBI-TSPO signaling pathway.


Assuntos
Citocinas , Retinopatia Diabética , Animais , Humanos , Camundongos , Citocinas/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Crescimento Neural/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo
6.
Fungal Genet Biol ; 161: 103695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513256

RESUMO

Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.


Assuntos
Phytophthora , Animais , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Glycine max/genética , Virulência/genética
7.
J Exp Bot ; 73(9): 2918-2936, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560189

RESUMO

Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.


Assuntos
Arabidopsis , Inibidor da Ligação a Diazepam , Acil Coenzima A/metabolismo , Animais , Arabidopsis/metabolismo , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Ésteres/metabolismo , Lipídeos , Mamíferos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Reprodução
8.
Reproduction ; 163(5): 309-321, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35275842

RESUMO

Decidualization of uterine stromal cells plays an important role in the establishment of normal pregnancy. Previous studies have demonstrated that Acyl-CoA binding protein (Acbp) is critical to cellular proliferation, differentiation, mitochondrial functions, and autophagy. The characterization and physiological function of Acbp during decidualization remain largely unknown. In the present study, we conducted the expression profile of Acbp in the endometrium of early pregnant mice. With the occurrence of decidualization, the expression of Acbp gradually increased. Similarly, Acbp expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. We applied the mice pseudopregnancy model to reveal that the expression of Acbp in the endometrium of early pregnant mice was not induced by embryonic signaling. Moreover, P4 significantly upregulated the expression of Acbp, whereas E2 appeared to have no regulating effect on Acbp expression in uterine stromal cells. Concurrently, we found that interfering with Acbp attenuated decidualization, and that might due to mitochondrial dysfunctions and the inhibition of fatty acid oxidation. The level of autophagy was increased after knocking down Acbp. During induced decidualization, the expression of ACBP was decreased with the treatment of rapamycin (an autophagy inducer), while increased with the addition of Chloroquine (an autophagy inhibitor). Our work suggests that Acbp plays an essential role in the proliferation and differentiation of stromal cells during decidualization through regulating mitochondrial functions, fatty acid oxidation, and autophagy.


Assuntos
Decídua , Inibidor da Ligação a Diazepam , Animais , Decídua/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , Pseudogravidez , Células Estromais/metabolismo
9.
Plant J ; 102(4): 856-871, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31991039

RESUMO

Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.


Assuntos
Clorófitas/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Microalgas/enzimologia , Triglicerídeos/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocombustíveis , Clorófitas/genética , Diacilglicerol O-Aciltransferase/genética , Inibidor da Ligação a Diazepam/genética , Cinética , Microalgas/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Nicotiana/enzimologia , Nicotiana/genética
10.
Glia ; 69(5): 1079-1093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33105065

RESUMO

The contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level. However, it is only recently that their modes of action, including the mechanisms by which they modulate energy metabolism, have begun to be elucidated. The data available today are abundant, significant, and sometimes contradictory, revealing a much more complex regulation than initially expected. Several mechanisms of action of endozepines seem to coexist at the central level, particularly in the hypothalamus. The brainstem has also recently emerged as a potential site of action for endozepines. In addition to their central anorexigenic effects, endozepines may also display peripheral effects promoting orexigenic actions, adding to their complexity and raising yet more questions. In this review, we attempt to provide an overview of our current knowledge in this rapidly evolving field and to pinpoint questions that remain unanswered.


Assuntos
Inibidor da Ligação a Diazepam , Neuroglia , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Neuroglia/metabolismo , Peptídeos
11.
BMC Plant Biol ; 21(1): 94, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588749

RESUMO

BACKGROUND: Acyl-CoA-binding proteins (ACBPs) possess a conserved acyl-CoA-binding (ACB) domain that facilitates binding to acyl-CoA esters and trafficking in eukaryotic cells. Although the various functions of ACBP have been characterized in several plant species, their structure, molecular evolution, expression profile, and function have not been fully elucidated in Zea mays L. RESULTS: Genome-wide analysis identified nine ZmACBP genes in Z. mays, which could be divided into four distinct classes (class I, class II, class III, and class IV) via construction of a phylogenetic tree that included 48 ACBP genes from six different plant species. Transient expression of a ZmACBP-GFP fusion protein in tobacco (Nicotiana tabacum) epidermal cells revealed that ZmACBPs localized to multiple different locations. Analyses of expression profiles revealed that ZmACBPs exhibited temporal and spatial expression changes during abiotic and biotic stresses. Eight of the nine ZmACBP genes were also found to have significant association with agronomic traits in a panel of 500 maize inbred lines. The heterologous constitutive expression of ZmACBP1 and ZmACBP3 in Arabidopsis enhanced the resistance of these plants to salinity and drought stress, possibly through alterations in the level of lipid metabolic and stress-responsive genes. CONCLUSION: The ACBP gene family was highly conserved across different plant species. ZmACBP genes had clear tissue and organ expression specificity and were responsive to both biotic and abiotic stresses, suggesting their roles in plant growth and stress resistance.


Assuntos
Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Zea mays/classificação , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
12.
Planta ; 254(4): 71, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505938

RESUMO

MAIN CONCLUSION: Plant class IV ACBPs diverged with the split of monocots and eudicots. Difference in the subcellular localization supported the functional variation of plant class IV ACBP. Acyl-CoA-binding proteins (ACBPs) are divided into class I-IV in plants. Class IV ACBPs are kelch motif containing proteins that are specific to plants. The currently known subcellular localizations of plant class IV ACBPs are either in the cytosol (Arabidopsis) or in the peroxisomes (rice). However, it is not clear whether peroxisomal localization of class IV ACBP is a shared character that distinguishes eudicots and monocots. Here, the phylogeny of class IV ACBPs from 73 plant species and subcellular localization of class IV ACBPs from six monocots and eudicots were conducted. Phylogenetic analysis of 112 orthologues revealed that monocot class IV ACBPs were basal to the monophyletic clade formed by eudicots and basal angiosperm. Transient expression of GFP fusions in onion epidermal cells demonstrated that monocot maize (Zea mays), wheat (Triticum aestivum), and sorghum (Sorghum bicolor) and eudicot poplar (Populus trichocarpa) all contained at least one peroxisomal localized class IV ACBP, while orthologues from cucumber (Cucumis sativus L.) and soybean (Glycine max) were all cytosolic. Combining the location of Arabidopsis and rice class IV ACBPs, it indicates that maintaining at least one peroxisomal class IV ACBP could be a shared feature within the tested monocots, while cytosolic class IV ACBPs would be preferred in the tested eudicots. Furthermore, the interaction between OsACBP6 and peroxisomal ATP-binding cassette (ABC) transporter provided clues for the functional mechanism of OsACBP6.


Assuntos
Arabidopsis , Inibidor da Ligação a Diazepam , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Coenzima A , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(51): E12101-E12110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509981

RESUMO

Plant response to environmental stimuli involves integration of multiple signals. Upon low-oxygen stress, plants initiate a set of adaptive responses to circumvent an energy crisis. Here, we reveal how these stress responses are induced by combining (i) energy-dependent changes in the composition of the acyl-CoA pool and (ii) the cellular oxygen concentration. A hypoxia-induced decline of cellular ATP levels reduces LONG-CHAIN ACYL-COA SYNTHETASE activity, which leads to a shift in the composition of the acyl-CoA pool. Subsequently, we show that different acyl-CoAs induce unique molecular responses. Altogether, our data disclose a role for acyl-CoAs acting in a cellular signaling pathway in plants. Upon hypoxia, high oleoyl-CoA levels provide the initial trigger to release the transcription factor RAP2.12 from its interaction partner ACYL-COA BINDING PROTEIN at the plasma membrane. Subsequently, according to the N-end rule for proteasomal degradation, oxygen concentration-dependent stabilization of the subgroup VII ETHYLENE-RESPONSE FACTOR transcription factor RAP2.12 determines the level of hypoxia-specific gene expression. This research unveils a specific mechanism activating low-oxygen stress responses only when a decrease in the oxygen concentration coincides with a drop in energy.


Assuntos
Acil Coenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Hipóxia Celular , Inibidor da Ligação a Diazepam/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oxigênio/metabolismo , Transdução de Sinais
14.
Biophys J ; 119(9): 1821-1832, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33080224

RESUMO

Binding of ligands is often crucial for function yet the effects of ligand binding on the mechanical stability and energy landscape of proteins are incompletely understood. Here, we use a combination of single-molecule optical tweezers and MD simulations to investigate the effect of ligand binding on the energy landscape of acyl-coenzyme A (CoA)-binding protein (ACBP). ACBP is a topologically simple and highly conserved four-α-helix bundle protein that acts as an intracellular transporter and buffer for fatty-acyl-CoA and is active in membrane assembly. We have previously described the behavior of ACBP under tension, revealing a highly extended transition state (TS) located almost halfway between the unfolded and native states. Here, we performed force-ramp and force-jump experiments, in combination with advanced statistical analysis, to show that octanoyl-CoA binding increases the activation free energy for the unfolding reaction of ACBP without affecting the position of the transition state along the reaction coordinate. It follows that ligand binding enhances the mechanical resistance and thermodynamic stability of the protein, without changing its mechanical compliance. Steered molecular dynamics simulations allowed us to rationalize the results in terms of key interactions that octanoyl-CoA establishes with the four α-helices of ACBP and showed that the unfolding pathway is marginally affected by the ligand. The results show that ligand-induced mechanical stabilization effects can be complex and may prove useful for the rational design of stabilizing ligands.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas , Inibidor da Ligação a Diazepam/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica
15.
Plant Cell Physiol ; 61(4): 735-747, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883014

RESUMO

Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.


Assuntos
Inibidor da Ligação a Diazepam/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arecaceae/genética , Arecaceae/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endosperma/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma
16.
Cell Microbiol ; 21(3): e12970, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30362657

RESUMO

Toxoplasma gondii relies on apicoplast-localised FASII pathway and endoplasmic reticulum-associated fatty acid elongation pathway for the synthesis of fatty acids, which flow through lipid metabolism mainly in the form of long-chain acyl-CoA (LCACoAs) esters. Functions of Toxoplasma acyl-CoA transporters in lipid metabolism remain unclear. Here, we investigated the roles of acyl-CoA-binding protein (TgACBP1) and a sterol carrier protein-2 (TgSCP2) as cytosolic acyl-CoA transporters in lipid metabolism. The fluormetric binding assay and yeast complementation confirmed the acyl-CoA binding activities of TgACBP1 and TgSCP2, respectively. Disruption of either TgACBP1 or TgSCP2 caused no obviously phenotypic changes, whereas double disruption resulted in defects in intracellular growth and virulence to mice. Gas chromatography coupled with mass spectrometry (GC-MS) results showed that TgACBP1 or TgSCP2 disruption alone led to decreased abundance of C18:1, whereas double disruption resulted in reduced abundance of C18:1, C22:1, and C24:1. 13 C labelling assay combined with GC-MS showed that double disruption of TgACBP1 and TgSCP2 led to reduced synthesis rates of C18:0, C22:1, and C24:1. Furthermore, high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HRMS) was used for lipidomic analysis of parasites and indicated that loss of TgACBP1 and TgSCP2 caused serious defects in production of glycerides and phospholipids. Collectively, TgACBP1 and TgSCP2 play synergistic roles in lipid metabolism in T. gondii.


Assuntos
Proteínas de Transporte/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo dos Lipídeos , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Transporte/genética , Inibidor da Ligação a Diazepam/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Virulência , Fatores de Virulência/genética
17.
New Phytol ; 223(1): 113-117, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30676650

RESUMO

Plant lipid signals are crucial developmental modulators and stress response mediators. A family of acyl-CoA-binding proteins (ACBPs) participates in the lipid trafficking of these signals. Isoform-specific functions can arise from differences in their subcellular distribution, tissue-specificity, stress-responsiveness, and ligand selectivity. In lipid-mediated cell signaling, plant ACBPs are not merely transporters but are also important regulators via their interaction with lipid-metabolic enzymes and precursor lipids. In this Insight, the regulatory roles of plant ACBPs in the synthesis of various signaling lipids, including phosphatidic acid, sterols, oxylipins, and sphingolipids, are reviewed. We focus on the functional significance of these lipid signals in plant development and stress responses with an overview of recent work using reverse genetics and transgenic Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Lipídeos/química , Transdução de Sinais , Modelos Biológicos
18.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699908

RESUMO

An intriguing target involved in several pathophysiological processes is the 18 kDa translocator protein (TSPO), of which exact functions remained elusive until now. A single nucleotide polymorphism in the TSPO gene influences the binding affinity of endogenous and synthetic TSPO ligands by facilitating a lower-affinity conformation, which modifies a potential ligand binding site, ultimately leading to a binding profile classification according to each genotype. For instance, some clinical effects of the distinctive binding affinity profile of cholesterol toward the TSPO of individuals with different genotypes have been extensively discussed. Therefore, we conducted an investigation based on a radioligand binding assay, to determine the inhibition constants of some reported endogenous TSPO ligands (diazepam binding inhibitor and protoporphyrin IX), as well as synthetic ligands (disulfiram and derivatives). We observed no dependency of the polymorphism on the binding affinity of the evaluated endogenous ligands, whereas a high dependency on the binding affinity of the tested synthetic ligands was evident.


Assuntos
Receptores de GABA/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Dissulfiram/metabolismo , Genótipo , Voluntários Saudáveis , Humanos , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Protoporfirinas/metabolismo , Ensaio Radioligante , Receptores de GABA/genética
19.
J Biol Chem ; 292(18): 7588-7597, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28320857

RESUMO

Ceramide and more complex sphingolipids constitute a diverse group of lipids that serve important roles as structural entities of biological membranes and as regulators of cellular growth, differentiation, and development. Thus, ceramides are vital players in numerous diseases including metabolic and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes of ACBP-/- mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial importance in understanding the regulation of ceramide metabolism in pathogenesis.


Assuntos
Ceramidas/biossíntese , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Animais , Linhagem Celular , Ceramidas/genética , Inibidor da Ligação a Diazepam/genética , Ácidos Graxos/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Biochim Biophys Acta ; 1861(9 Pt B): 1409-1421, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26747650

RESUMO

Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Assuntos
Inibidor da Ligação a Diazepam/genética , Metabolismo dos Lipídeos/genética , Ligação Proteica/genética , Acil Coenzima A/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA