RESUMO
The VEGF-A isoforms play a crucial role in vascular development, and the VEGF signaling pathway is a clinically validated therapeutic target for several pathological conditions. Alternative mRNA splicing leads to the generation of multiple VEGF-A isoforms, including VEGF165. A recent study reported the presence of another isoform, VEGF-Ax, arising from programmed readthrough translation. Compared to VEGF165, VEGF-Ax has a 22-amino-acid extension in the COOH terminus and has been reported to function as a negative regulator of VEGF signaling in endothelial cells, with potent anti-angiogenic effects. Here, we show that, contrary to the earlier report, VEGF-Ax stimulates endothelial cell mitogenesis, angiogenesis, as well as vascular permeability. Accordingly, VEGF-Ax induces phosphorylation of key tyrosine residues in VEGFR-2. Notably, VEGF-Ax was less potent than VEGF165, consistent with its impaired binding to the VEGF co-receptor neuropilin-1.
Assuntos
Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular , Processamento Alternativo , Sequência de Aminoácidos , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Quimiotaxia/efeitos dos fármacos , Clonagem Molecular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Cobaias , Células HEK293 , Humanos , Camundongos , Mitógenos/farmacologia , Mitose/efeitos dos fármacos , Mitose/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Neuropilina-1/metabolismo , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Assuntos
Actinas/metabolismo , Linfócitos B/imunologia , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Síndromes de Imunodeficiência/genética , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Adolescente , Inibidores da Angiogênese/farmacologia , Linfócitos B/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Criança , Citotoxicidade Imunológica/genética , Análise Mutacional de DNA , Dineínas/metabolismo , Feminino , Células HEK293 , Humanos , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/tratamento farmacológico , Células Jurkat , Células Matadoras Naturais/efeitos dos fármacos , Lenalidomida , Masculino , Mutação/genética , Linhagem , RNA Interferente Pequeno/genética , Linfócitos T/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/farmacologiaRESUMO
Blood vessels form extensive networks that nurture all tissues in the body. Abnormal vessel growth and function are hallmarks of cancer and ischemic and inflammatory diseases, and they contribute to disease progression. Therapeutic approaches to block vascular supply have reached the clinic, but limited efficacy and resistance pose unresolved challenges. Recent insights establish how endothelial cells communicate with each other and with their environment to form a branched vascular network. The emerging principles of vascular growth provide exciting new perspectives, the translation of which might overcome the current limitations of pro- and antiangiogenic medicine.
Assuntos
Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Inflamação/tratamento farmacológicoRESUMO
Blockade of vascular endothelial growth factor (VEGF) signaling with bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), or with receptor tyrosine kinase inhibitors, has improved progression-free survival and, in some indications, overall survival across several types of cancers by interrupting tumor angiogenesis. However, the clinical benefit conferred by these therapies is variable, and tumors from treated patients eventually reinitiate growth. Previously we demonstrated, in mouse tumor models, that galectin-1 (Gal1), an endogenous glycan-binding protein, preserves angiogenesis in anti-VEGF-resistant tumors by co-opting the VEGF receptor (VEGFR)2 signaling pathway in the absence of VEGF. However, the relevance of these findings in clinical settings is uncertain. Here, we explored, in a cohort of melanoma patients from AVAST-M, a multicenter, open-label, randomized controlled phase 3 trial of adjuvant bevacizumab versus standard surveillance, the role of circulating plasma Gal1 as part of a compensatory mechanism that orchestrates endothelial cell programs in bevacizumab-treated melanoma patients. We found that increasing Gal1 levels over time in patients in the bevacizumab arm, but not in the observation arm, significantly increased their risks of recurrence and death. Remarkably, plasma Gal1 was functionally active as it was able to reprogram endothelial cell biology, promoting migration, tubulogenesis, and VEGFR2 phosphorylation. These effects were prevented by blockade of Gal1 using a newly developed fully human anti-Gal1 neutralizing mAb. Thus, using samples from a large-scale clinical trial from stage II and III melanoma patients, we validated the clinical relevance of Gal1 as a potential mechanism of resistance to bevacizumab treatment.
Assuntos
Melanoma , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Humanos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Galectina 1 , Melanoma/tratamento farmacológico , Melanoma/patologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Células Endoteliais/patologia , Fatores de Crescimento do Endotélio Vascular , Biologia , Inibidores da Angiogênese/farmacologiaRESUMO
In the era of immunotherapy, lenvatinib (LEN) still holds an important position in the sequential treatment of advanced hepatocellular carcinoma (HCC). However, the sustained therapeutic effect of LEN is not sufficient, and there is a need to address the development of resistance. Neuropilin-1 (NRP1) is known to act as a coreceptor for epidermal growth factor receptor (EGFR), Met, and vascular endothelial growth factor receptor 2 (VEGFR2), which have been reported to be involved in LEN resistance. In this study, we used cell culture and in vivo xenograft models to evaluate the contribution of NRP1 in the acquisition of LEN resistance in HCC as well as the potential of NRP1 as a therapeutic target. LEN resistance increased EGF/EGFR and hepatocyte growth factor (HGF)/Met signaling in liver cancer cells and VEGFA/VEGFR2 and HGF/Met signaling in vascular endothelial cells, thereby promoting cell proliferation, cell migration, and angiogenesis. We found that activation of NRP1 is essential for the enhancement of these signaling. In addition, NRP1 inhibition combined with LEN therapy synergistically improved the antitumor effects against LEN-resistant HCC, indicating that NRP1 is an attractive therapeutic target.NEW & NOTEWORTHY We demonstrated that neuropilin-1 (NRP1) was an essential coreceptor mediating the activation of multiple signaling pathways in the acquisition of resistance to lenvatinib (LEN) in HCC. The addition of NRP1 inhibition to LEN had a synergistic antitumor effect on LEN-resistant HCC in culture and in vivo xenograft models.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Neovascularização Patológica , Neuropilina-1 , Compostos de Fenilureia , Quinolinas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinolinas/farmacologia , Neuropilina-1/metabolismo , Neuropilina-1/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Compostos de Fenilureia/farmacologia , Humanos , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Camundongos Nus , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator de Crescimento de Hepatócito/metabolismo , Inibidores da Angiogênese/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Camundongos Endogâmicos BALB C , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , AngiogêneseRESUMO
Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.
Assuntos
Araquidonato 5-Lipoxigenase , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Ácido Araquidônico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de CélulasRESUMO
Peptides are promising therapeutic agents for various biological targets due to their high efficacy and low toxicity, and the design of peptide ligands with high binding affinity to the target of interest is of utmost importance in peptide-based drug design. Introducing a conformational constraint to a flexible peptide ligand using a side-chain lactam-bridge is a convenient and efficient method to improve its binding affinity to the target. However, in general, such a small structural modification to a flexible ligand made with the intent of lowering the configurational entropic penalty for binding may have unintended consequences in different components of the binding enthalpy and entropy, including the configurational entropy component, which are still not clearly understood. Toward probing this, we examine different components of the binding enthalpy and entropy as well as the underlying structure and dynamics, for a side-chain lactam-bridged peptide inhibitor and its flexible analog forming complexes with vascular endothelial growth factor (VEGF), using all-atom molecular dynamics simulations. It is found that introducing a side-chain lactam-bridge constraint into the flexible peptide analog led to a gain in configurational entropy change but losses in solvation entropy, solute internal energy, and solvation energy changes upon binding, pinpointing the opportunities and challenges in drug design. The present study features an interplay between configurational and solvation entropy changes, as well as the one between binding enthalpy and entropy, in ligand-target binding upon imposing a conformational constraint into a flexible ligand.
Assuntos
Inibidores da Angiogênese , Entropia , Lactamas , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lactamas/química , Lactamas/metabolismo , Ligantes , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Humanos , Peptídeos/química , Peptídeos/metabolismo , Sítios de LigaçãoRESUMO
Vascular endothelial growth factor (VEGF) mediated angiogenesis is crucial for tumor progression. Isoforms of VEGF bind to different VEGF receptors (VEGFRs) to initiate angiogenesis specific cellular signaling. Inhibitors that target both the receptors and ligands are in clinical use to impede angiogenesis. Bevacizumab, a monoclonal antibody (mAb) approved by the Food and Drug Administration (FDA), binds in the VEGF receptor binding domain (RBD) of all soluble isoforms of VEGF and inhibits the VEGF-VEGFR interaction. Bevacizumab is also used in combination with other chemotherapeutic agents for a better therapeutic outcome. Understanding the intricate polymorphic character of VEGFA gene and the influence of missense or nonsynonymous mutations in the form of nonsynonymous polymorphisms (nsSNPs) on RBD of VEGF may aid in increasing the efficacy of this drug. This study has identified 18 potential nsSNPs in VEGFA gene that affect the VEGF RBD structure and alter its binding pattern to bevacizumab. The mutated RBDs, modeled using trRosetta, in addition to the changed pattern of secondary structure, post translational modification and stability compared to the wild type, have shown contrasting binding affinity and molecular interaction pattern with bevacizumab. Molecular docking analysis by ClusPro and visualization using PyMol and PDBsum tools have detected 17 nsSNPs with decreased binding affinity to bevacizumab and therefore may impact the treatment efficacy. Whereas VEGF RBD expressed due to rs1267535717 (R229H) nsSNP of VEGFA has increased affinity to the mAb. This study suggests that genetic characterization of VEGFA before bevacizumab mediated cancer treatment is essential in predicting the appropriate efficacy of the drug, as the treatment efficiency may vary at individual level.
Assuntos
Anticorpos Monoclonais Humanizados , Fator A de Crescimento do Endotélio Vascular , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Anticorpos Monoclonais/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Isoformas de Proteínas , Mutação , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêuticoRESUMO
Anti-angiogenic agents elicit considerable immune modulatory effects within the tumor microenvironment, underscoring the rationale for synergistic clinical development of VEGF and immune checkpoint inhibitors in advanced gastric cancer (AGC). Early phase studies involving Asian patients demonstrated encouraging anti-tumor efficacies. We report the results of the REGOMUNE phase II study, in which Caucasian patients were administered regorafenib, a multi-tyrosine kinase inhibitor, in combination with avelumab, a PD-L1-targeting monoclonal antibody. This therapeutic regimen resulted in deep and durable responses in 19% of patients, with the median duration of response not yet reached. Notwithstanding, a significant proportion of AGC patients exhibited no therapeutic advantage, prompting investigations into mechanisms of inherent resistance. Comprehensive biomarker profiling elucidated that non-responders predominantly exhibited an augmented presence of M2 macrophages within the tumor microenvironment and a marked overexpression of S100A10 by neoplastic cells, a protein previously implicated in macrophage chemotaxis. Additionally, peripheral biomarker assessments identified elevated levels of cytokines, including CSF-1, IL-4, IL-8, and TWEAK, correlating with adverse clinical outcomes, thereby accentuating the role of macrophage infiltration in mediating resistance. These insights furnish an invaluable foundation for elucidating, and potentially circumventing, resistance mechanisms in current AGC therapeutic paradigms, emphasizing the integral role of tumor microenvironmental dynamics and immune modulation.
Assuntos
Antígeno B7-H1 , Resistencia a Medicamentos Antineoplásicos , Proteômica , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteômica/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Biomarcadores Tumorais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Feminino , Masculino , Transcriptoma , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pessoa de Meia-Idade , Perfilação da Expressão GênicaRESUMO
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , China , Neovascularização Patológica/patologia , Microambiente TumoralRESUMO
Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/ß-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/ß-catenin pathway activity, as activating the pathway induced, while ß-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.
Assuntos
Carbolinas , Pirimidinas , Fator A de Crescimento do Endotélio Vascular , beta Catenina , Animais , Humanos , Camundongos , Angiogênese , Inibidores da Angiogênese/farmacologia , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização WntRESUMO
BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.
Assuntos
Células Endoteliais , Desiminases de Arginina em Proteínas , Proteínas Proto-Oncogênicas c-akt , Humanos , Células Endoteliais/metabolismo , Histonas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amidinas/química , Amidinas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologiaRESUMO
Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.
Assuntos
Bothrops , Células Endoteliais , Serpentes Peçonhentas , Animais , Feminino , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Bothrops/metabolismo , Metaloproteases/metabolismo , Venenos de Serpentes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologiaRESUMO
Neovascular eye diseases, including proliferative diabetic retinopathy and retinopathy of prematurity, is a major cause of blindness. Laser ablation and intravitreal anti-VEGF injection have shown their limitations in treatment of retinal neovascularization. Identification of a new therapeutic strategies is in urgent need. Our study aims to assess the effects of Cryptotanshinone (CPT), a natural compound derived from Salvia miltiorrhiza Bunge, in retina neovascularization and explore its potential mechanism. Our study demonstrated that CPT did not cause retina tissue toxicity at the tested concentrations. Intravitreal injections of CPT reduced pathological angiogenesis and promoted physical angiogenesis in oxygen-induced retinopathy (OIR) model. CPT improve visual function in OIR mice and reduced cell apoptosis. Moreover, we also revealed that CPT diminishes the expression of inflammatory cytokines in the OIR retina. In vitro, the administration of CPT effectively inhibited endothelial cells proliferation, migration, sprouting, and tube formation induced by the stimulation of human retinal vascular endothelial cells (HRVECs) with VEGF165. Mechanistically, CPT blocking the phosphorylation of VEGFR2 and downstream targeting pathway. After all, the findings demonstrated that CPT exhibits potent anti-angiogenic and anti-inflammatory effects in OIR mice, and it has therapeutic potential for the treatment of neovascular retinal diseases.
Assuntos
Injeções Intravítreas , Camundongos Endogâmicos C57BL , Fenantrenos , Neovascularização Retiniana , Animais , Fenantrenos/farmacologia , Fenantrenos/administração & dosagem , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologiaRESUMO
Recently, the incidence of malignant tumors is on the rise and searching for new treatments on it has become the research priority. Blocking the vascular endothelial growth factor (VEGF) and its receptor (VEGFR) is one of the treatment strategies that used in the development of specific anti-angiogenic drugs. The deficiencies in tissue penetration and affinity maturation become the weakness of these drugs in anti-tumors applications. The single heavy chain antibody found in Chiloscyllium plagiosum, which has a low molecular weight and superior tissue penetration of variable region (variable new antigen receptor, VNARs), was considered to have the high antigen-binding activity and stability. This type of antibody has a simple structure that can be prokaryoticaly expressed, which makes it easily to produce new antiangiogenic target drugs. Specific anti-IgNAR rabbit multiple antibodies have been used to assess the level of VNARs in sharks and have shown a significant enrichment of IgNAR after triple immunization. An anti-VEGFR2 phage library was used for the targeted VNARs screening, and five candidate VNARs sequences were subsequently obtained by phage screening, followed by combined screening with the transcriptome library, and analysis of conserved regions along with 3D modelling matched the VNAR profile. ELISA and cell-based assays showed that two of the VNARs, VNAR-A6, and VNAR-E3, had a superior antigen affinity and anti-angiogenic activity thereby being able to inhibit human Umbilical Vein Endothelial Cells proliferation and migration. The anti-VEGFR2 VNARs derived from the immunized C. plagiosum and screened by phage library, which provide the new research ideas and specific approaches for the development of new drugs. The anti-VEGFR2 VNARs are capable for blocking the VEGF-VEGFR pathway, which of these may contribute to expanding the use of anti-angiogenic drugs.
Assuntos
Inibidores da Angiogênese , Células Endoteliais da Veia Umbilical Humana , Tubarões , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Humanos , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Tubarões/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Coelhos , Neovascularização Patológica/imunologia , Neovascularização Patológica/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Movimento CelularRESUMO
BACKGROUND: BI 836880 is a humanized bispecific nanobody® that binds to and blocks vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2). A comprehensive biomarker and modeling approach is presented here that supported dose finding for BI 836880. METHODS: Two Phase I dose-escalation studies (1336.1 [NCT02674152], 1336.6 [NCT02689505]) assessed BI 836880 in adults with confirmed locally advanced or metastatic solid tumors, refractory to standard therapy or for which standard therapy was not reliably effective. Two dosing schedules were investigated, 3 weeks (q3w) or once weekly (qw), starting at a dose of 40 mg. In a comprehensive biomarker approach, soluble pharmacodynamic markers (free and total plasma VEGF-A and Ang-2), as well as circulating angiogenic factors (soluble VEGF3, soluble Tie2 and placenta growth factor, amongst others) were analyzed to assess target engagement in peripheral blood for q3w doses. A Population based pharmacokinetics/pharmacodynamics (PopPK/PD) model was built using the limited Phase I dataset to support dose finding by simulations. In order to demonstrate drug activity in the tumor, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was applied. RESULTS: DCE-MRI scans supported target engagement in the tumor. Free VEGF-A was depleted at all doses, whereas free Ang-2 decreased dose-dependently, reaching depletion in most patients from 360 mg q3w onwards. While total VEGF-A levels increased in a dose-dependent manner, reaching saturation at 360 mg q3w, total Ang-2 levels increased, but did not plateau. Angiogenic biomarkers showed changes from doses ≥ 360 mg q3w. PopPK/PD modeling showed that doses ≥ 360 mg q3w led to > 90% inhibition of free Ang-2 at steady-state in most patients. By increasing the dose to ≥ 500 mg q3w, > 90% of patients are expected to achieve this level. CONCLUSIONS: The comprehensive analyses of multiple target engagement markers support BI 836880 720 mg q3w as a biologically relevant monotherapy dose schedule. TRIAL REGISTRATION: NCT02674152 and NCT02689505.
Assuntos
Angiopoietina-2 , Relação Dose-Resposta a Droga , Modelos Biológicos , Fator A de Crescimento do Endotélio Vascular , Humanos , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Biomarcadores/sangue , Idoso , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Biomarcadores Tumorais/sangueRESUMO
BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.
Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Masculino , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia , Oftalmopatias/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Neovascularização Patológica , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismoRESUMO
Vascular endothelial growth factor (VEGF) inhibition is an essential targeted strategy for malignant tumors, but its efficacy is severely constrained by drug resistance. The traditional view holds that the target of VEGF inhibition is endothelial cells, and thus compensatory angiogenesis is considered the main mechanism of drug resistance. In this study, we found that tumor cells themselves could develop acquired resistance to VEGF therapy, indicating an independent resistance mechanism apart from angiogenesis. Notably, this acquired resistance was temporary, disappearing completely four days after discontinuing exposure to the drug in vitro. Our findings suggest that tumor cells may also be targets of VEGF inhibition, and their response to treatment should not be overlooked in contributing to drug resistance.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologiaRESUMO
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Assuntos
Inibidores da Angiogênese , Neoplasias , Neovascularização Patológica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , AnimaisRESUMO
OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.