Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 193-219, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153211

RESUMO

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.


Assuntos
RNA Polimerase II/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIIH/genética , Iniciação da Transcrição Genética/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Síndrome
2.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34133942

RESUMO

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Assuntos
DNA/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Microscopia Crioeletrônica , DNA/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Polimerase II/ultraestrutura , Deleção de Sequência , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/metabolismo
3.
Cell ; 169(1): 120-131.e22, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340337

RESUMO

Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Regiões Promotoras Genéticas , RNA Polimerase I/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica
4.
Cell ; 168(5): 843-855.e13, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215706

RESUMO

The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.


Assuntos
Processamento Alternativo/efeitos da radiação , DNA Helicases/genética , RNA não Traduzido/genética , Transcrição Gênica , Raios Ultravioleta , Linhagem Celular , Éxons , Humanos , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elongação da Transcrição Genética/efeitos da radiação , Iniciação da Transcrição Genética/efeitos da radiação
5.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149603

RESUMO

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/química , Metiltransferases/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Fatores de Transcrição/química , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Bacteriófago T7/enzimologia , Bacteriófago T7/metabolismo , DNA Mitocondrial/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821049

RESUMO

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Regiões Promotoras Genéticas , RNA Polimerase II , Iniciação da Transcrição Genética , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Complexo Mediador/metabolismo , Complexo Mediador/genética , Células HeLa , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Células HEK293
7.
Mol Cell ; 84(9): 1699-1710.e6, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604172

RESUMO

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.


Assuntos
Fosfoproteínas , Regiões Promotoras Genéticas , RNA Polimerase II , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fatores de Transcrição , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Humanos , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIB/genética , Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Iniciação da Transcrição Genética , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIA/genética , Transcrição Gênica , Elongação da Transcrição Genética , RNA/metabolismo , RNA/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFII/genética
8.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36731470

RESUMO

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , RNA Polimerase II/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Complexo Mediador/genética , Iniciação da Transcrição Genética
9.
Nat Rev Mol Cell Biol ; 19(4): 262-274, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29209056

RESUMO

Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.


Assuntos
Complexo Mediador/genética , Complexo Mediador/metabolismo , Transcrição Gênica , Animais , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Complexo Mediador/química , Modelos Biológicos , Modelos Genéticos , Micoses/genética , Micoses/metabolismo , Micoses/terapia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Poro Nuclear/genética , Poro Nuclear/metabolismo , RNA Polimerase II/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Iniciação da Transcrição Genética , Ativação Transcricional
10.
Nat Rev Mol Cell Biol ; 19(10): 621-637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946135

RESUMO

RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.


Assuntos
Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Iniciação da Transcrição Genética/fisiologia , Animais , Cromatina , DNA , Eucariotos/genética , Eucariotos/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
11.
Nature ; 631(8022): 891-898, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020164

RESUMO

Patterns of transcriptional activity are encoded in our genome through regulatory elements such as promoters or enhancers that, paradoxically, contain similar assortments of sequence-specific transcription factor (TF) binding sites1-3. Knowledge of how these sequence motifs encode multiple, often overlapping, gene expression programs is central to understanding gene regulation and how mutations in non-coding DNA manifest in disease4,5. Here, by studying gene regulation from the perspective of individual transcription start sites (TSSs), using natural genetic variation, perturbation of endogenous TF protein levels and massively parallel analysis of natural and synthetic regulatory elements, we show that the effect of TF binding on transcription initiation is position dependent. Analysing TF-binding-site occurrences relative to the TSS, we identified several motifs with highly preferential positioning. We show that these patterns are a combination of a TF's distinct functional profiles-many TFs, including canonical activators such as NRF1, NFY and Sp1, activate or repress transcription initiation depending on their precise position relative to the TSS. As such, TFs and their spacing collectively guide the site and frequency of transcription initiation. More broadly, these findings reveal how similar assortments of TF binding sites can generate distinct gene regulatory outcomes depending on their spatial configuration and how DNA sequence polymorphisms may contribute to transcription variation and disease and underscore a critical role for TSS data in decoding the regulatory information of our genome.


Assuntos
Regulação da Expressão Gênica , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Humanos , Sítios de Ligação , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Variação Genética
12.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051353

RESUMO

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
13.
Cell ; 158(2): 314-326, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036631

RESUMO

Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here, we present the mechanism in bacteria. We developed a high-throughput, in vitro, single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found that duty cycles of transcriptional bursting depend on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment.


Assuntos
Escherichia coli/genética , Transcrição Gênica , DNA Girase/metabolismo , DNA Super-Helicoidal/genética , Hibridização in Situ Fluorescente , Modelos Genéticos , Regiões Promotoras Genéticas , Elongação da Transcrição Genética , Iniciação da Transcrição Genética
14.
Nature ; 622(7984): 872-879, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821701

RESUMO

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Nucleotídeos/metabolismo , RNA/biossíntese , RNA/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura
15.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33765415

RESUMO

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Assuntos
Elementos Facilitadores Genéticos , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Biocatálise , Cromatina/metabolismo , Regulação para Baixo/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
16.
Mol Cell ; 81(17): 3576-3588.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34384542

RESUMO

RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética/fisiologia , Núcleo Celular/metabolismo , Complexo Mediador/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , TATA Box/genética , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica/genética
17.
Mol Cell ; 81(17): 3560-3575.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34375585

RESUMO

Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética/fisiologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Complexo Mediador/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise Espaço-Temporal , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica/genética
18.
Mol Cell ; 81(5): 983-997.e7, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539786

RESUMO

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and ß-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Iniciação da Transcrição Genética , alfa-Globinas/genética , Globinas beta/genética , Animais , Diferenciação Celular , Éxons , Feto , Regulação da Expressão Gênica , Biblioteca Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Íntrons , Células K562 , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , alfa-Globinas/deficiência , Globinas beta/deficiência
19.
Mol Cell ; 81(2): 268-280.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278362

RESUMO

Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.


Assuntos
DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítios de Ligação , Microscopia Crioeletrônica , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
20.
Cell ; 152(5): 1021-36, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452851

RESUMO

Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes.


Assuntos
Código das Histonas , Histonas/metabolismo , Fator de Transcrição TFIID/metabolismo , Iniciação da Transcrição Genética , Linhagem Celular Tumoral , Humanos , Lisina/metabolismo , Metilação , TATA Box , Fatores Associados à Proteína de Ligação a TATA , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA