Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 17(8): 906-13, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27434011

RESUMO

Inflammation occurs after disruption of tissue homeostasis by cell stress, injury or infection and ultimately involves the recruitment and retention of cells of hematopoietic origin, which arrive at the affected sites to resolve damage and initiate repair. Interleukin 1α (IL-1α) and IL-1ß are equally potent inflammatory cytokines that activate the inflammatory process, and their deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. Although much attention has been given to understanding the biogenesis of IL-1ß, the biogenesis of IL-1α and its distinctive role in the inflammatory process remain poorly defined. In this review we examine key aspects of IL-1α biology and regulation and discuss its emerging importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases.


Assuntos
Inflamação/fisiopatologia , Interleucina-1alfa/fisiologia , Alarminas/metabolismo , Animais , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Granuloma/etiologia , Granuloma/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1alfa/biossíntese , Interleucina-1alfa/genética , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-1/fisiologia , Transdução de Sinais
2.
Immunity ; 50(4): 1033-1042.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926232

RESUMO

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases.


Assuntos
Coagulação Sanguínea/fisiologia , Sistema Imunitário/imunologia , Interleucina-1alfa/fisiologia , Trombina/fisiologia , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Plaquetas/metabolismo , Humanos , Imunidade Inata , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Queratinócitos/metabolismo , Macrófagos/metabolismo , Mamíferos/imunologia , Camundongos , Precursores de Proteínas/metabolismo , Seleção Genética , Sepse/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trombopoese/imunologia , Cicatrização/imunologia
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361152

RESUMO

The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1ß release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1ß production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.


Assuntos
Cardiolipinas/metabolismo , Interleucina-1alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Autofagia , Cardiolipinas/fisiologia , Caspase 1/metabolismo , Feminino , Células HEK293 , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Hum Reprod ; 26(9): 712-726, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32647859

RESUMO

Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1ß. Lastly, using Nlrp3-/- mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.


Assuntos
Inflamassomos/fisiologia , Interleucina-1alfa/fisiologia , Nascimento Prematuro/metabolismo , Alarminas/fisiologia , Líquido Amniótico/efeitos dos fármacos , Líquido Amniótico/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1alfa/administração & dosagem , Interleucina-1alfa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/genética
5.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825489

RESUMO

IL-1 belongs to a family of 11 members and is one of the seven receptor-agonists with pro-inflammatory activity. Beyond its biological role as a regulator of the innate immune response, IL-1 is involved in stress and chronic inflammation, therefore it is responsible for several pathological conditions. In particular, IL-1 is known to exert a critical function in malignancies, influencing the tumor microenvironment and promoting cancer initiation and progression. Thus, it orchestrates immunosuppression recruiting pro-tumor immune cells of myeloid origin. Furthermore, new recent findings showed that this cytokine can be directly produced by tumor cells in a positive feedback loop and contributes to the failure of targeted therapy. Activation of anti-apoptotic signaling pathways and senescence are some of the mechanisms recently proposed, but the role of IL-1 in tumor cells refractory to standard therapies needs to be further investigated.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Neoplasias/patologia , Receptores de Interleucina-1/metabolismo , Animais , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Ligantes , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Interleucina-1/antagonistas & inibidores , Microambiente Tumoral
6.
Cell Immunol ; 328: 9-17, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29499909

RESUMO

IL-1α in vitro promotes immunoglobulin secretion by inducing proliferation of mature B cells, whereas IL-1α deficiency has no effect on in vivo antibody production. However, the reason IL-1α deficiency does not reduce in vivo antibody production is still unclear. In this study, we found that similar as in vivo data, IL-1α deficiency did not affect antibody production in in vitro LPS-stimulated B cells. Surprisingly, LPS-stimulated IL-1α-/- B cells reduced a key antibody production-related transcription factor X-box binding protein 1 (Xbp-1) expression. Furthermore, we found that IL-1α deficiency up-regulated mTOR expression, which bypassed Xbp-1 for immunoglobulin secretion. Finally, we showed that Xbp-1 suppressed mTOR expression, whereas mTOR suppressed the activation of Xbp-1 promoter via JunB. Together, these data suggest that IL-1a deficiency reduced Xbp-1 and up-regulated mTOR. This may explain why IL-1α deficiency has no effect on antibody production.


Assuntos
Linfócitos B/imunologia , Serina-Treonina Quinases TOR/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Formação de Anticorpos , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica/imunologia , Interleucina-1alfa/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1alfa/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmócitos/imunologia , Transporte Proteico , Serina-Treonina Quinases TOR/imunologia , Fatores de Transcrição/genética , Ativação Transcricional , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
7.
PLoS Pathog ; 11(1): e1004625, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25629406

RESUMO

Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1ß and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1ß was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1ß were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1ß in controlling A. fumigatus infection in the murine lung.


Assuntos
Aspergillus fumigatus/imunologia , Quimiotaxia de Leucócito , Interleucina-1alfa/fisiologia , Aspergilose Pulmonar/imunologia , Animais , Testes de Provocação Brônquica , Células Cultivadas , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Aspergilose Pulmonar/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
8.
Proc Natl Acad Sci U S A ; 111(34): 12492-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114230

RESUMO

Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1ß-KO mice. IL-1α-KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α-KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α-KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1ß-KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α-KO mice. The protein and mRNA of both IL-1α and IL-1ß mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2-associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1ß, IL-6, and TNF-α in ovaries of IL-1α-KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.


Assuntos
Interleucina-1alfa/deficiência , Interleucina-1beta/deficiência , Ovário/fisiologia , Envelhecimento , Animais , Hormônio Antimülleriano/sangue , Apoptose , Feminino , Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/fisiologia , Interleucina-1beta/genética , Interleucina-1beta/fisiologia , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/citologia , Ovário/imunologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do FSH/genética , Receptores do FSH/fisiologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/fisiologia
9.
J Am Soc Nephrol ; 27(9): 2564-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27516236

RESUMO

Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1ß and of the alarmin IL-1α Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1ß ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-ß-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/ß regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-ß-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency-approved IL-1-neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-ß-IL-1R system in kidney disease should be further explored.


Assuntos
Alarminas/fisiologia , Inflamassomos/fisiologia , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Nefropatias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Nefropatias/tratamento farmacológico
10.
Hautarzt ; 68(12): 987-993, 2017 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-28993846

RESUMO

BACKGROUND: Wound healing can be divided into three phases: (1) exsudation phase, (2) granulation phase, (3) regeneration phase. In particular, the epithelization phase is of great importance in order to quickly reconstitute the natural skin barrier. The aim of the present study was to determine the reepithelization kinetics of untreated and 0.5% sodium hyaluronate (NHA) treated human 3D full thickness skin models. MATERIALS AND METHODS: The test protocol consisted of topically applying 10 µl of the test substance 0.5% NHA twice a day. Evaluation of reepithelialization kinetics was carried out from days 2-6. Determination of the influence on immune response was performed based on quantification of IL-1α and IL-10. RESULTS: Application of 0.5% NHA twice a day enhanced the reepithelialization speed at all time points (p < 0.001). This observation is accompanied by a reduced expression of IL-10 paralleled by an elevated expression of IL-1α on days 2-4 (p < 0.001). DISCUSSION: The treatment of human skin models with NHA resulted in a significantly increased reepithelization velocity of wounded tissue and consequently promoted faster wound closure, compared to untreated controls. It can be assumed that the downregulation of IL-10 caused the IL1-α mediated increased immune response which finally leads to accelerated wound healing. Follow-up studies will reveal if the faster wound healing and the modulation of the immune response through the application of NHA is valid in vivo.


Assuntos
Ácido Hialurônico/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Humanos , Imunidade Celular/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-1alfa/fisiologia , Reepitelização/efeitos dos fármacos , Reepitelização/imunologia , Regeneração/efeitos dos fármacos , Regeneração/imunologia , Pele/imunologia , Cicatrização/imunologia
11.
J Proteome Res ; 15(3): 1033-50, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26794603

RESUMO

The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Animais , Cartilagem Articular/patologia , Células Cultivadas , Interleucina-1alfa/fisiologia , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Estresse Fisiológico
12.
IUBMB Life ; 67(5): 323-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25906979

RESUMO

Acute brain injuries such as caused by stroke are amongst the leading causes of death and are the leading cause of disability. Despite this there are very limited therapeutic options, and new therapeutic strategies and targets are required. Inflammation is known to exacerbate brain injury and is now considered as a potential therapeutic target. The damaging inflammation that occurs after acute brain injury is driven by pro-inflammatory members of the interleukin (IL)-1 cytokine family, namely, IL-1α and IL-1ß. Previous research efforts have focussed on the biology and contribution of IL-1ß. However, we now recognise that IL-1α is an early and important mediator of inflammation after injury. This review focuses on what is known about IL-1α, its regulation and its contribution to brain injury. Inhibiting mechanisms regulating the processing and release of IL-1α may offer new therapeutic targets for the treatment of devastating acute brain injuries.


Assuntos
Encefalite/fisiopatologia , Interleucina-1alfa/fisiologia , Morte Celular , Humanos , Interleucina-1alfa/metabolismo
13.
J Autoimmun ; 65: 82-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318644

RESUMO

Bone erosion is a sign of severe rheumatoid arthritis and osteoclasts play a major role in the bone resorption. Recently, myeloid-derived suppressor cells (MDSC) has been reported to be increased in collagen-induced arthritis (CIA). The number of circulating MDSCs is shown to correlate with rheumatoid arthritis. These findings suggest that MDSCs are precursor cells involved in bone erosion. In this study, MDSCs isolated from mice with CIA stimulated with M-CSF and RANKL in vitro expressed osteoclast markers and acquired osteoclast bone resorption function. MDSCs sorted from CIA mice were transferred into the tibia of normal DBA/1J mice and bones were subjected to histological and Micro CT analyses. The transferred CIA-MDSCs were shown to differentiate into TRAP(+) osteoclasts that were capable of bone resorption in vivo. MDSCs isolated from normal mice had more potent suppressor activity and much less capability to differentiate to osteoclast. Additional experiments showed that NF-κB inhibitor Bay 11-7082 or IκB inhibitor peptide blocked the differentiation of MDSCs to osteoclast and bone resorption. IL-1Ra also blocked this differentiation. In contrast, the addition of IL-1α further enhanced osteoclast differentiation and bone resorption. These results suggest that MDSCs are a source of osteoclast precursors and inflammatory cytokines such as IL-1, contributing significantly to erosive changes seen in rheumatoid arthritis and related disorders.


Assuntos
Artrite Experimental/complicações , Reabsorção Óssea/imunologia , Interleucina-1alfa/fisiologia , Células Mieloides/imunologia , NF-kappa B/fisiologia , Osteoclastos/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Interleucina-1alfa/metabolismo , Fator Estimulador de Colônias de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Ligante RANK/fisiologia , Sulfonas/farmacologia , Tíbia/patologia
14.
Zhonghua Zhong Liu Za Zhi ; 37(11): 810-5, 2015 Nov.
Artigo em Zh | MEDLINE | ID: mdl-26887509

RESUMO

OBJECTIVE: To explore the effect of colon cancer cell-derived interleukin-1α on the migration and proliferation of human umbilical vein endothelial cells as well as the role of IL-1α and IL-1ra in the angiogenesis process. METHODS: Western blot was used to detect the expression of IL-1α and IL-1R1 protein in the colon cancer cell lines with different liver metastatic potential. We also examined how IL-1α and IL-1ra influence the proliferation and migration of umbilical vascular endothelial cells assessed by PreMix WST-1 assay and migration assay, respectively. Double layer culture technique was used to detect the effect of IL-1α on the proliferation and migration of vascular endothelial cells and the effect of IL-1ra on the vascular endothelial cells. RESULTS: Western blot analysis showed that IL-1α protein was only detected in highly metastatic colon cancer HT-29 and WiDr cells, but not in the lowly metastatic CaCo-2 and CoLo320 cells.Migration assay showed that there were significant differences in the number of penetrated cells between the control (17.9±3.6) and 1 ng/ml rIL-1α group (23.2±4.2), 10 ng/ml rIL-1α group (31.7±4.5), and 100 ng/ml rIL-1α group (38.6±4.9), showing that it was positively correlated with the increasing concentration of rIL-1α (P<0.01 for all). The proliferation assay showed that the absorbance values were 1.37±0.18 in the control group, and 1.79±0.14 in the 1 ng/ml rIL-1α group, 2.14±0.17 in the 10 ng/ml rIL-1α group, and 2.21±0.23 in the 100 ng/ml rIL-1α group, showing a positive correlation with the increasing concentration of rIL-1α(P<0.01 for all). IL-1ra significantly inhibited the proliferation and migration of vascular endothelial cells (P<0.01). The levels of VEGF protein were (1.697±0.072) ng/ml, (3.507±0.064)ng/ml and (4.139±0.039)ng/ml in the control, HUVECs+ IL-1α and HUVECs+ HT-29 co-culture system groups, respectively, showing a significant difference between the control and HUVECs+ 10 pg/ml rIL-1α groups and between the control and HUVECs+ HT-29 groups (P<0.01 for both). CONCLUSIONS: Our findings indicate that colon cancer cell-derived IL-1α plays an important role in the liver metastasis of colon cancer through increased VEGF level of the colon cancer cells and enhanced vascular endothelial cells proliferation, migration and angiogenesis, while IL-1ra can suppress the effect of IL-1α and inhibit the angiogenesis in colon cancer.


Assuntos
Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Interleucina-1alfa/fisiologia , Neovascularização Patológica/etiologia , Western Blotting , Células CACO-2 , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Cocultura , Neoplasias do Colo/patologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1alfa/metabolismo , Neoplasias Hepáticas/secundário
15.
Gut ; 63(4): 598-609, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23793223

RESUMO

OBJECTIVE: The differential role of the IL-1 agonists, IL-1α, which is mainly cell-associated versus IL-1ß, which is mostly secreted, was studied in colon inflammation. DESIGN: Dextran sodium sulfate (DSS) colitis was induced in mice globally deficient in either IL-1α or IL-1ß, and in wild-type mice, or in mice with conditional deletion of IL-1α in intestinal epithelial cells (IECs). Bone marrow transplantation experiments were performed to assess the role of IL-1α or IL-1ß of myeloid versus colon non-hematopoietic cells in inflammation and repair in acute colitis. RESULTS: IL-1α released from damaged IECs acts as an alarmin by initiating and propagating colon inflammation, as IL-1α deficient mice exhibited mild disease symptoms with improved recovery. IL-1ß is involved in repair of IECs and reconstitution of the epithelial barrier during the resolution of colitis; its deficiency correlates with disease exacerbation. Neutralisation of IL-1α in control mice during acute colitis led to alleviation of clinical and histological manifestations, whereas treatment with rIL-1Ra or anti-IL-1ß antibodies was not effective. Repair after colitis correlated with accumulation of CD8 and regulatory T cells in damaged crypts. CONCLUSIONS: The role of IL-1α and IL-1ß differs in DSS-induced colitis in that IL-1α, mainly of colon epithelial cells is inflammatory, whereas IL-1ß, mainly of myeloid cell origin, promotes healing and repair. Given the dissimilar functions of each IL-1 agonistic molecule, an IL-1 receptor blockade would not be as therapeutically effective as specific neutralising of IL-1α, which leaves IL-1ß function intact.


Assuntos
Colite/fisiopatologia , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Animais , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/fisiopatologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Interleucina-1/agonistas , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Infiltração Leucêmica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/fisiologia
16.
Biochim Biophys Acta ; 1829(9): 954-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23563247

RESUMO

S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce the expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells are not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated the phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon the use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein ß (C/EBPß). Mutated C/EBPß binding sequences or C/EBPß-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPß-dependent transcriptional activity.


Assuntos
Calgranulina B/genética , Epiderme/metabolismo , Interleucina-1alfa/fisiologia , Queratinócitos/metabolismo , Transcrição Gênica/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Reação em Cadeia da Polimerase , Interferência de RNA , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Prostate ; 74(2): 121-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24185914

RESUMO

INTRODUCTION. Overexpression of bone morphogenetic protein-6 (BMP-6) has been reported in human prostate cancer tissues. Previously we have demonstrated that BMP-6 enhances prostate cancer growth in mice and not in tissue culture. Herein, we have investigated the mechanism of BMP-6's pro-tumorigenic effect in prostate cancer. METHODS. Tramp C2 murine and LNCaP human prostate cancer cell lines were co-cultured with RAW 264.7 and THP-1 cells, respectively. IL-1a knockout mice were used to confirm the role of BMP-6/IL-1a loop in vivo. Lastly, conditional macrophage null mice cd11b-DTR was used. RESULTS. The results demonstrated that BMP-6 induced the expression of IL-1a in macrophages via a cross-talk between NF-kB1 p50 and Smad1. When endothelial cells were treated with conditioned media harvested from macrophages incubated with BMP-6, tube formation was detected. In the presence of IL-1a neutralizing antibody, endothelial tube formation was blocked. In vivo, tumor growth and neovascularization decreased significantly when BMP-6 was expressed in IL-1a knockout and conditional macrophage-null mice. CONCLUSIONS. Prostate cancer-derived BMP-6 stimulates tumor-associated macrophages to produce IL-1a through a crosstalk between Smad1 and NF-kB1; IL-1a, in turn, promotes angiogenesis and prostate cancer growth.


Assuntos
Proteína Morfogenética Óssea 6/fisiologia , Carcinogênese/patologia , Interleucina-1alfa/fisiologia , Macrófagos/patologia , Neovascularização Patológica/fisiopatologia , Neoplasias da Próstata/patologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Endotélio Vascular/patologia , Humanos , Interleucina-1alfa/deficiência , Interleucina-1alfa/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/fisiologia , Neoplasias da Próstata/irrigação sanguínea , Transdução de Sinais/fisiologia , Proteína Smad1/fisiologia
18.
J Immunol ; 189(1): 381-92, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661091

RESUMO

Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.


Assuntos
Circulação Cerebrovascular/imunologia , DNA Mitocondrial/antagonistas & inibidores , Neurônios/enzimologia , Neurônios/patologia , Infiltração de Neutrófilos/imunologia , Peptídeo Hidrolases/metabolismo , Animais , Células Cultivadas , Circulação Cerebrovascular/genética , Meios de Cultivo Condicionados/farmacologia , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Espaço Extracelular/enzimologia , Espaço Extracelular/genética , Espaço Extracelular/imunologia , Imunofenotipagem , Interleucina-1alfa/deficiência , Interleucina-1alfa/fisiologia , Interleucina-1beta/deficiência , Interleucina-1beta/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/imunologia , Infiltração de Neutrófilos/genética , Peptídeo Hidrolases/genética , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
19.
J Immunol ; 188(7): 2977-80, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387558

RESUMO

Nitrogen-containing bisphosphonates (NBPs) are taken by millions for bone disorders but may cause serious inflammatory reactions. In this study, we used a murine peritonitis model to characterize the inflammatory mechanisms of these agents. At dosages comparable to those used in humans, injection of NBPs into the peritoneum caused recruitment of neutrophils, followed by an influx of monocytes. These cellular changes corresponded to an initial increase in IL-1α, which preceded a rise in multiple other proinflammatory cytokines. IL-1R, IL-1α, and IL-1ß were required for neutrophil recruitment, whereas other MyD88-dependent signaling pathways were needed for the monocyte influx. Mice deficient in mast cells, but not mice lacking lymphocytes, were resistant to NBP-induced inflammation, and reconstitution of these mice with mast cells restored sensitivity to NBPs. These results document the critical role of mast cells and IL-1 in NBP-mediated inflammatory reactions.


Assuntos
Alendronato/toxicidade , Difosfonatos/toxicidade , Imidazóis/toxicidade , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Mastócitos/fisiologia , Peritonite/induzido quimicamente , Animais , Quimiotaxia/fisiologia , Ácido Clodrônico/toxicidade , Interleucina-1alfa/deficiência , Interleucina-1alfa/genética , Interleucina-1beta/deficiência , Interleucina-1beta/genética , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/fisiologia , Neutrófilos/imunologia , Pamidronato , Peritonite/imunologia , Peritonite/patologia , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiologia , Ácido Zoledrônico
20.
Eur J Immunol ; 42(6): 1385-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22678894

RESUMO

Although all structural studies on cytokine-cytokine receptor interactions are based on a crystallized cytokine binding to its specific receptor, there is no dearth of evidence that membrane-embedded cytokines are biologically active by virtue of cell-cell contact. Clearly the orientation of the membrane cytokine is such that it allows binding to the receptor, as takes place with the soluble form of the cytokine. In this issue, Bellora et al. [Eur. J. Immunol. 2012. 42: 1618-1626] report that interleukin-18 (IL-18) exists as an integral membrane protein on M-CSF-differentiated human macrophages and that upon LPS stimulation, IL-18 induces IFN-γ from NK cells in a caspase-1-dependent fashion. The immunological and inflammatory implications for this finding are considerable because of the role of IL-18 as the primary IFN-γ inducing cytokine in promoting Th1 responses.


Assuntos
Interleucina-18/fisiologia , Interleucina-1alfa/fisiologia , Células Th1/imunologia , Animais , Humanos , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Lipopolissacarídeos/farmacologia , Células Th1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA