Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 241: 117617, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967706

RESUMO

Digestate is considered as an option for recycling resources and a part of the substitution for chemical fertilizers to reduce environmental impacts. However, its application may lead to significant nitrous oxide (N2O) emissions because of its high concentration of ammonium and degradable carbon. The research objectives are to evaluate how N2O emissions respond to digestate as compared to urea application and whether this depends on soil properties and moisture. Either digestate or urea (100 mg N kg-1) was applied with and without a nitrification inhibitor of 3,4-dimethylpyrazole phosphate (DMPP) to three soil types (fluvo-aquic soil, black soil, and latosol) under three different soil moisture conditions (45, 65, and 85% water-filled pore space (WFPS)) through microcosm incubations. Results showed that digestate- and urea-induced N2O emissions increased exponentially with soil moisture in the three studied soils, and the magnitude of the increase was much greater in the alkaline fluvo-aquic soil, coinciding with high net nitrification rate and transient nitrite accumulation. Compared with urea-amended soils, digestate led to significantly higher peaks in N2O and carbon dioxide (CO2) emissions, which might be due to stimulated rapid oxygen consumption and mineralized N supply. Digestate-induced N2O emissions were all more than one time higher than those induced by urea at the three moisture levels in the three studied soils, except at 85% WFPS in the fluvo-aquic soil. DMPP was more effective at mitigating N2O emissions (inhibitory efficacy: 73%-99%) in wetter digestate-fertilized soils. Overall, our study shows the contrasting effect of digestate to urea on N2O emissions under different soil properties and moisture levels. This is of particular value for determining the optimum of applying digestate under varying soil moisture conditions to minimize stimulated N2O emissions in specific soil properties.


Assuntos
Solo , Ureia , Solo/química , Ureia/química , Ureia/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Óxido Nitroso , Nitrificação , Fertilizantes , Agricultura
2.
Microb Ecol ; 85(4): 1434-1447, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35420314

RESUMO

The efficacy of nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) varies with soil types. Understanding the microbial mechanisms for this variation may lead to better modelling of NI efficacy and therefore on-farm adoption. This study addressed the response patterns of mineral nitrogen, nitrous oxide (N2O) emission, abundances of N-cycling functional guilds and soil microbiota characteristics, in relation to urea application with or without DCD or DMPP in two arable soils (an alkaline and an acid soil). The inhibition of nitrification rate and N2O emission by NI application occurred by suppressing ammonia-oxidizing bacteria (AOB) abundances and increasing the abundances of nosZI-N2O reducers; however, abundances of ammonia-oxidizing archaea (AOA) were also stimulated with NIs-added in these two arable soils. DMPP generally had stronger inhibition efficiency than DCD, and both NIs' addition decreased Nitrobacter, while increased Nitrospira abundance only in alkaline soil. N2O emissions were positively correlated with AOB and negatively correlated with nosZI in both soils and AOA only in acid soil. Moreover, N2O emissions were also positively correlated with nirK-type denitrifiers in alkaline soil, and clade A comammox in acid soil. Amendment with DCD or DMPP altered soil microbiota community structure, but had minor effect on community composition. These results highlight a crucial role of the niche differentiation among canonical ammonia oxidizers (AOA/AOB), Nitrobacter and Nitrospira, as well as nosZI- and nosZII-N2O reducers in determining the varying efficacies of DCD and DMPP in different arable soils.


Assuntos
Betaproteobacteria , Solo , Solo/química , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Fosfatos , Amônia , Microbiologia do Solo , Archaea , Bactérias , Oxirredução
3.
J Environ Manage ; 345: 118687, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517094

RESUMO

Fungicides and nitrogen (N) fertilizers are essential to maintain plant yield in current intensive agriculture. Percarbamide is a novel type of N fertilizer with strong oxidizing property, and the nitrification inhibitor is widely used in agricultural production. It may be feasible to apply percarbamide and nitrification inhibitor as N management to promote fungicide dissipations in soil-plant system. This study quantified the effects of percarbamide and nitrification inhibitor dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on carbendazim residues, and microbial communities of soil-plant systems, and relationships among carbendazim residues, soil and endophytic microbial communities and plant yields were also comprehensively quantified. Compared with the control, the percarbamide significantly reduced soil carbendazim residues by 29.4% but enhanced the lettuce yield by 28.0%. Soil carbendazim residues were significantly and negatively correlated with the soil total N and NO3--N contents. Soil microbial community structures and co-occurrence networks were more sensitive to N management than their endophytic counterparts. In comparison to the percarbamide alone, the DCD significantly increased the nodes of soil fungal community co-occurrence network which were positively correlated with the plant yield. The DCD outweighed DMPP in increasing the lettuce yield and soil fungal community stability and reshaping soil bacterial community structure. Our study suggested that soil microbial communities were more sensitive to percarbamide and nitrification inhibitor applications than their endophytic counterparts under fungicide pressure and that the DCD outweighed DMPP in reshaping microbial communities. The integrated applications of percarbamide and nitrification inhibitors were promising soil N management strategies to promote fungicide removal and stimulate microbial community in the soil-plant systems.


Assuntos
Fungicidas Industriais , Microbiota , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Fertilizantes/análise , Microbiologia do Solo , Nitrogênio/química
4.
J Environ Sci (China) ; 127: 222-233, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522055

RESUMO

Agriculture has increased the release of reactive nitrogen to the environment due to crops' low nitrogen-use efficiency (NUE) after the application of nitrogen-fertilisers. Practices like the use of stabilized-fertilisers with nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) have been adopted to reduce nitrogen losses. Otherwise, cover crops can be used in crop-rotation-strategies to reduce soil nitrogen pollution and benefit the following culture. Sorghum (Sorghum bicolor) could be a good candidate as it is drought tolerant and its culture can reduce nitrogen losses derived from nitrification because it exudates biological nitrification inhibitors (BNIs). This work aimed to evaluate the effect of fallow-wheat and sorghum cover crop-wheat rotations on N2O emissions and the grain yield of winter wheat crop. In addition, the suitability of DMPP addition was also analyzed. The use of sorghum as a cover crop might not be a suitable option to mitigate nitrogen losses in the subsequent crop. Although sorghum-wheat rotation was able to reduce 22% the abundance of amoA, it presented an increment of 77% in cumulative N2O emissions compared to fallow-wheat rotation, which was probably related to a greater abundance of heterotrophic-denitrification genes. On the other hand, the application of DMPP avoided the growth of ammonia-oxidizing bacteria and maintained the N2O emissions at the levels of unfertilized-soils in both rotations. As a conclusion, the use of DMPP would be recommendable regardless of the rotation since it maintains NH4+ in the soil for longer and mitigates the impact of the crop residues on nitrogen soil dynamics.


Assuntos
Fertilizantes , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Agricultura , Solo/química , Nitrogênio/farmacologia , Produtos Agrícolas , Triticum , Produção Agrícola , Óxido Nitroso
5.
Appl Environ Microbiol ; 88(20): e0136922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190238

RESUMO

Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi exerts important feedbacks on soil processes in general and N cycling in particular. Here, we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from an organic source (15N-labeled plant litter) that was provided beyond the direct reach of roots. In addition, we tested if pathways of 15N uptake from litter by mycorrhizal hyphae were affected by amendment with different synthetic nitrification inhibitors (dicyandiamide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient acquisition of 15N by mycorrhizal plants through the mycorrhizal pathway, independent of nitrification inhibitors. These results were in stark contrast to 15N uptake by nonmycorrhizal plants, which generally took up much less 15N, and the uptake was further suppressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were not strongly affected by either the AM fungi or the nitrification inhibitors. IMPORTANCE Nitrogen is one of the most important elements for all life on Earth. In soil, N is present in various chemical forms and is fiercely competed for by various microorganisms as well as plants. Here, we address competition for reduced N (ammonia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These two functionally important groups of soil microorganisms, participating in nitrification and plant mineral nutrient acquisition, respectively, have often been studied in separation in the past. Here, we showed, using various biochemical and molecular approaches, that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar to that of some widely used synthetic nitrification inhibitors, whereas they have only a limited impact on abundance of ammonia-oxidizing archaea. Competition for free ammonium is a plausible explanation here, but it is also possible that the fungi produce some compounds acting as so-called biological nitrification inhibitors.


Assuntos
Compostos de Amônio , Micorrizas , Nitrificação , Micorrizas/metabolismo , Amônia/metabolismo , Microbiologia do Solo , Iodeto de Dimetilfenilpiperazina/metabolismo , Iodeto de Dimetilfenilpiperazina/farmacologia , Archaea/metabolismo , Solo/química , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 311(5): G869-G879, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27514482

RESUMO

Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension, or pressure. Digital image correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat-sheet preparations of guinea pig distal colon were set up with arrays of tissue markers in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide. Mechanosensory firing was recorded during load-evoked uniaxial or biaxial distensions. Distension caused movement of surface markers which was captured by video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity.


Assuntos
Potenciais de Ação/fisiologia , Colo/fisiologia , Mecanorreceptores/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Colo/efeitos dos fármacos , Colo/inervação , Iodeto de Dimetilfenilpiperazina/farmacologia , Feminino , Cobaias , Masculino , Mecanorreceptores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia
7.
Exp Cell Res ; 320(2): 354-64, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24162003

RESUMO

1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis - possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis.


Assuntos
Iodeto de Dimetilfenilpiperazina/farmacologia , Glioma/irrigação sanguínea , Glioma/patologia , Neovascularização Patológica/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Humanos , Indução de Remissão , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Saco Vitelino/irrigação sanguínea , Saco Vitelino/efeitos dos fármacos
8.
Int Arch Allergy Immunol ; 165(4): 255-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25660404

RESUMO

BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. OBJECTIVE: We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. METHODS: Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. RESULTS: nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p < 0.05). The effect of ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). CONCLUSION: This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses.


Assuntos
Asma/imunologia , Basófilos/imunologia , Iodeto de Dimetilfenilpiperazina/análogos & derivados , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/imunologia , Adulto , Idoso , Asma/tratamento farmacológico , Estudos Cross-Over , Iodeto de Dimetilfenilpiperazina/administração & dosagem , Iodeto de Dimetilfenilpiperazina/farmacologia , Método Duplo-Cego , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Agonistas Nicotínicos/administração & dosagem , Diester Fosfórico Hidrolases/sangue , Pirofosfatases/sangue , Distribuição Aleatória , Adulto Jovem
9.
Gut ; 62(2): 227-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22387530

RESUMO

BACKGROUND: Most direct understanding of enteric nerve (patho)physiology has been obtained by electrode and imaging techniques in animal models and human surgical samples. Until now, neuronal activity recordings from a more accessible human tissue source have remained a true challenge. OBJECTIVES: To record nerve activity in human intestinal biopsies using imaging techniques. DESIGN: Submucous plexus was isolated from duodenal biopsies. Enteric nerves were functionally and morphologically examined using calcium (Ca(2+)) imaging and immunohistochemistry. Exogenous application of high-K(+) solution, the nicotinic cholinergic receptor agonist (1,1-dimethyl-4-phenylpiperazinium; DMPP) or serotonin (5-HT), and electrical stimulation of interganglionic fibre tracts were used to activate the neurons, and intracellular Ca(2+) concentrations ([Ca(2+)](i)) were monitored. Enteric ganglia were stained with neuronal and glial markers. RESULTS: Using high-K(+) solution, 146 neurons were identified in 70 ganglia (44 biopsies from 29 subjects). The exogenous application of DMPP or 5-HT caused a transient [Ca(2+)](i) increase, respectively, in 68% and 63% of the neurons identified by high-K(+). Electrical stimulation evoked responses in 57% of the neurons; these responses were totally or partly suppressed by tetrodotoxin or zero-Ca(2+) solution, respectively. Immunohistochemical analysis showed both isolated neurons and ganglia interconnected by typical interganglionic fibre bundles. The average number of ganglia was 7.7±6.0 per biopsy and each ganglion contained on average 4.5±1.2 neurons. CONCLUSION: In this study, for the first time, live recordings were performed of nerve activity in intestinal biopsies. This novel approach is of key importance to study living neurons in both health and disease and to test newly developed compounds in an in-vitro human tissue model.


Assuntos
Duodeno/inervação , Sistema Nervoso Entérico/fisiologia , Imagem Óptica/métodos , Plexo Submucoso/fisiologia , Adulto , Idoso , Compostos de Anilina/metabolismo , Biópsia , Cálcio/metabolismo , Iodeto de Dimetilfenilpiperazina/farmacologia , Duodenoscopia , Duodeno/patologia , Estimulação Elétrica , Potenciais Evocados/fisiologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Agonistas Nicotínicos/farmacologia , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Xantenos/metabolismo
10.
Sci Total Environ ; 912: 169005, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065494

RESUMO

Biological nitrogen fixation and nitrification inhibitor applications contribute to improving soil nitrogen (N) availability, however, free-living N fixation affected by nitrification inhibitors has not been effectively evaluated in soils under different weed management methods. In this study, the effects of the nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on the nitrogenase, nifH gene,and diazotrophic communities in soils under different weed management methods (AMB, weeds growth without mowing or glyphosate spraying; GS, glyphosate spraying; MSG, mowing and removing weeds and glyphosate spraying; and WM, mowing aboveground weeds) were investigated. Compared to the control counterparts, the DCD application decreased soil nitrogenase activity and nifH gene abundance by 4.5 % and 37.9 %, respectively, under the GS management method, and the DMPP application reduced soil nitrogenase activity by 20.4 % and reduced the nifH gene abundance by 83.4 % under the MSG management method. The application of nitrification inhibitors significantly elevated soil NH4+-N contents but decreased NO3--N contents, which had adverse impacts on soil nifH gene abundance and nitrogenase activity. The nifH gene abundances were also negatively impacted by dissolved organic N and Geobacter but were positively affected by available phosphorus and diazotrophic community structures. Nitrification inhibitors significantly inhibited Methylocella but stimulated Rhizobiales and affected soil diazotrophic communities. The nitrification inhibitors DCD and DMPP significantly altered soil diazotrophic community structures, but weed management outweighed nitrification inhibitors in reshaping soil diazotrophic community structures. The non-targeted effects of the nitrification inhibitors DMPP and DCD on soil free-living N fixation were substantially influenced by the weed management methods.


Assuntos
Fixação de Nitrogênio , Solo , Solo/química , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Nitrogenase , Fosfatos , Microbiologia do Solo , Nitrogênio/análise , Fertilizantes
11.
Sci Total Environ ; 912: 169105, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070566

RESUMO

Improving nitrogen use efficiency of chemical fertilizers is essential to mitigate the negative environmental impacts of nitrogen. Nitrification, the conversion of ammonium to nitrate via nitrite by soil microbes, is a prominent source of nitrogen loss in soil systems. The effectiveness of nitrification inhibitors in reducing nitrogen loss through inhibition of nitrification is well-documented, however, their efficacy in heavy metals-contaminated soils needs thorough investigations. The current study assessed the efficacy of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in reducing nitrous oxide (N2O) emissions in cadmium (Cd) contaminated paddy and red soils under lab-controlled environment. Obtained results indicated the substantial reduction in N2O emissions with DMPP in paddy and red soil by 48 and 35 %, respectively. However, Cd contamination resulted in reduced efficacy of DMPP, thus decreased the N2O emissions by 36 and 25 % in paddy and red soil, respectively. It was found that addition of DMPP had a significant effect on the abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA). Notably, the reduction in N2O emissions by DMPP varied with the abundance of AOB. Moreover, Cd pollution resulted in a significant (P < 0.05) reduction in the abundance of archaeal and bacterial amoA genes, as well as bacterial nirK, nirS, and nosZ genes. The combined treatment of Cd and DMPP had a detrimental impact on denitrifiers, thereby influencing the overall efficiency of DMPP. These findings provide novel insights into the application of DMPP to mitigate nitrification and its potential role in reducing N2O emissions in contaminated soils.


Assuntos
Cádmio , Fosfatos , Cádmio/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Amônia/farmacologia , Microbiologia do Solo , Archaea , Nitrificação , Solo , Óxido Nitroso/análise , Nitrogênio/farmacologia , Fertilizantes/análise
12.
Cells Tissues Organs ; 197(5): 411-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23407109

RESUMO

BACKGROUND: Within the gut, acetylcholine (ACh) is synthesised by enteric neurons, as well as by 'non-neuronal' epithelial cells. In studies of non-intestinal epithelia, ACh was involved in the generation of an intact epithelial barrier. In the present study, primary cultured porcine colonocytes were used to determine whether treatment with exogenous ACh or expression of endogenous epithelium-derived ACh may modulate epithelial tightness in the gastrointestinal tract. METHODS: Piglet colonocytes were cultured on filter membranes for 8 days. The tightness of the growing epithelial cell layer was evaluated by measuring transepithelial electrical resistance (TEER). To determine whether ACh modulates the tightness of the cell layer, cells were treated with cholinergic, muscarinic and/or nicotinic agonists and antagonists. Choline acetyltransferase (ChAT), cholinergic receptors and ACh were determined by immunohistochemistry, RT-PCR and HPLC, respectively. RESULTS: Application of the cholinergic agonist carbachol (10 µm) and the muscarinic agonist oxotremorine (10 µM) resulted in significantly higher TEER values compared to controls. The effect was completely inhibited by the muscarinic antagonist atropine. Application of atropine alone (without any agonist) led to significantly lower TEER values compared to controls. Synthesis of ACh by epithelial cells was proven by detection of muscarinic and nicotinic receptor mRNAs, immunohistochemical detection of ChAT and detection of ACh by HPLC. CONCLUSION: ACh is strongly involved in the regulation of epithelial tightness in the proximal colon of pigs via muscarinic pathways. Non-neuronal ACh seems to be of particular importance for epithelial cells forming a tight barrier.


Assuntos
Colinérgicos/farmacologia , Colo/metabolismo , Mucosa Intestinal/metabolismo , Animais , Células Cultivadas , Colina O-Acetiltransferase/metabolismo , Colo/citologia , Colo/efeitos dos fármacos , Iodeto de Dimetilfenilpiperazina/farmacologia , Impedância Elétrica , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/enzimologia , Feminino , Imuno-Histoquímica , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Agonistas Nicotínicos/farmacologia , Ocludina/genética , Ocludina/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sus scrofa , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
13.
J Agric Food Chem ; 71(46): 17689-17699, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934059

RESUMO

Fungicide carbendazim accumulation in soils and plants is a wide concern. Nitrogen (N) is a substantial nutrient limiting crop growth and affecting soil microbial activity and the community in degrading fungicides. We investigated the effects of urea-hydrogen peroxide (UHP) and nitrification inhibitors Dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) on carbendazim accumulation and soil and endophytic microbial communities. The UHP application had negligible influences on soil and plant carbendazim accumulation, but the combined UHP and DCD decreased soil carbendazim accumulation by 5.31% and the combined UHP and DMPP decreased plant carbendazim accumulation by 44.36%. The combined UHP and nitrification inhibitor significantly decreased the ratios of soil Firmicutes and endophytic Ascomycota. Soil microbial community assembly was governed by the stochastic process, while the stochastic and deterministic processes governed the endophyte. Our findings could provide considerable methods to reduce fungicide accumulation in soil-plant systems with agricultural N management strategies.


Assuntos
Microbiota , Solo , Nitrificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Carbamida/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Microbiologia do Solo , Fertilizantes , Nitrogênio/análise
14.
J Hazard Mater ; 451: 131175, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913747

RESUMO

Applying nitrogen (N)-cycling inhibitors is an effective measure to improve N fertilizer utilization efficiency, but the effects of N-cycling inhibitors on fungicide residues in soil-crop systems are unclear. In this study, nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were applied into agricultural soils with fungicide carbendazim applications. The soil abiotic properties, carrot yields, carbendazim residues, bacterial communities and their comprehensive relationships were also quantified. Compared to the control treatment, the DCD and DMPP significantly decreased soil carbendazim residues by 96.2% and 96.0%, and the DMPP and NBPT significantly reduced carrot carbendazim residues by 74.3% and 60.3%, respectively. The nitrification inhibitor applications also generated significant and positive effects on carrot yields and soil bacterial community diversities. The DCD application significantly stimulated soil Bacteroidota and endophytic Myxococcota and modified soil and endophytic bacterial communities. Meanwhile, the DCD and DMPP applications also positively stimulated the co-occurrence network edges of soil bacterial communities by 32.6% and 35.2%, respectively. The linear correlation coefficients between soil carbendazim residues and pH, ETSA and NH4+-N contents were - 0.84, - 0.57 and - 0.80, respectively. The nitrification inhibitor applications generated win-win effects on the soil-crop systems by decreasing carbendazim residues but promoting soil bacterial community diversities and stabilities and crop yields.


Assuntos
Fungicidas Industriais , Solo , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Bactérias , Nitrogênio/química , Fertilizantes , Amônia
15.
Environ Sci Pollut Res Int ; 30(54): 116162-116174, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910350

RESUMO

Nitrification inhibitors (NIs) are considered as an effective strategy for reducing nitrification rate and related environmental nitrogen (N) loss. However, whether plant-derived biological NIs had an advantage over chemical NIs in simultaneously inhibiting nitrification rate and N2O production remains unclear. Here, we conducted an aerobic 15N microcosmic incubation experiment to compare the effects of a biological NI (methyl 3-(4-hydroxyphenyl) propionate, MHPP) with three chemical NIs, 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin), dicyandiamide (DCD), and 3,4-dimethylpyrazole phosphate (DMPP) on (i) gross N mineralization and nitrification rate and (ii) the relative importance of nitrification and denitrification in N2O emission in a calcareous soil. The results showed that DMPP significantly inhibited m_gross rate (P < 0.05), whereas DCD, nitrapyrin, and MHPP only numerically inhibited it. Gross N nitrification (n_gross) rates were inhibited by 9.48% in the DCD treatment to 51.5% in the nitrapyrin treatment. Chemical NIs primarily affected the amoA gene abundance of ammonia-oxidizing bacteria (AOB), whereas biological NIs affected the amoA gene abundance of ammonia-oxidizing archaea (AOA) and AOB. AOB's community composition was more susceptible to NIs than AOA, and NIs mainly targeted Nitrosospira clusters of AOB. Chemical NIs of DCD, DMPP, and nitrapyrin proportionally reduced N2O production from nitrification and denitrification. However, the biological NI MHPP stimulated short-term N2O emission and increased the proportion of N2O from denitrification. Our findings showed that the influence of NIs on gross N mineralization rate (m_gross) was dependent on the NI type. MHPP exhibited a moderate n_gross inhibitory capacity compared with the three chemical NIs. The mechanisms of chemical and biological NIs inhibiting n_gross can be partly attributed to changes in the abundance and community of ammonia oxidizers. A more comprehensive evaluation is needed to determine whether biological NIs have advantages over chemical NIs in inhibiting greenhouse gas emissions.


Assuntos
Betaproteobacteria , Solo , Solo/química , Nitrificação , Amônia/análise , Iodeto de Dimetilfenilpiperazina/farmacologia , Microbiologia do Solo , Archaea , Fosfatos/farmacologia , Oxirredução
16.
Environ Sci Pollut Res Int ; 30(23): 64719-64735, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929253

RESUMO

Nitrification inhibitors (NIs), especially dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), have been extensively investigated to mitigate nitrogen (N) losses from the soil and thus improve crop productivity by enhancing N use efficiency. However, to provide crop and soil-specific guidelines about using these NIs, a quantitative assessment of their efficacy in mitigating gaseous emissions, worth for nitrate leaching, and improving crop productivity under different crops and soils is yet required. Therefore, based upon 146 peer-reviewed research studies, we conducted a meta-analysis to quantify the effect of DCD and DMPP on gaseous emissions, nitrate leaching, soil inorganic N, and crop productivity under different variates. The efficacy of the NIs in reducing the emissions of CO2, CH4, NO, and N2O highly depends on the crop, soil, and experiment types. The comparative efficacy of DCD in reducing N2O emission was higher than the DMPP under maize, grasses, and fallow soils in both organic and chemical fertilizer amended soils. The use of DCD was linked to increased NH3 emission in vegetables, rice, and grasses. Depending upon the crop, soil, and fertilizer type, both the NIs decreased nitrate leaching from soils; however, DMPP was more effective. Nevertheless, the effect of DCD on crop productivity indicators, including N uptake, N use efficiency, and biomass/yield was higher than DMPP due to certain factors. Moreover, among soils, crops, and fertilizer types, the response by plant productivity indicators to the application of NIs ranged between 35 and 43%. Overall, the finding of this meta-analysis strongly suggests the use of DCD and DMPP while considering the crop, fertilizer, and soil types.


Assuntos
Gases , Nitrificação , Gases/análise , Iodeto de Dimetilfenilpiperazina/farmacologia , Fosfatos/análise , Fertilizantes/análise , Nitratos/análise , Solo , Nitrogênio/análise , Poaceae , Produtos Agrícolas , Óxido Nitroso/análise , Agricultura
17.
J Neurosci ; 31(43): 15352-61, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031881

RESUMO

Neurons of the enteric nervous system (ENS) arise from neural crest cells that migrate into and along the developing gastrointestinal tract. A subpopulation of these neural-crest derived cells express pan-neuronal markers early in development, shortly after they first enter the gut. However, it is unknown whether these early enteric "neurons" are electrically active. In this study we used live Ca(2+) imaging to examine the activity of enteric neurons from mice at embryonic day 11.5 (E11.5), E12.5, E15.5, and E18.5 that were dissociated and cultured overnight. PGP9.5-immunoreactive neurons from E11.5 gut cultures responded to electrical field stimulation with fast [Ca(2+)](i) transients that were sensitive to TTX and ω-conotoxin GVIA, suggesting roles for voltage-gated Na(+) channels and N-type voltage-gated Ca(2+) channels. E11.5 neurons were also responsive to the nicotinic cholinergic agonist, dimethylphenylpiperazinium, and to ATP. In addition, spontaneous [Ca(2+)](i) transients were present. Similar responses were observed in neurons from older embryonic gut. Whole-cell patch-clamp recordings performed on E12.5 enteric neurons after 2-10 h in culture revealed that these neurons fired both spontaneous and evoked action potentials. Together, our results show that enteric neurons exhibit mature forms of activity at early stages of ENS development. This is the first investigation to directly examine the presence of neural activity during enteric neuron development. Along with the spinal cord and hindbrain, the ENS appears to be one of the earliest parts of the nervous system to exhibit electrical activity.


Assuntos
Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Neurônios/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Biofísica , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Iodeto de Dimetilfenilpiperazina/farmacologia , Estimulação Elétrica/métodos , Embrião de Mamíferos , Proteínas de Fluorescência Verde , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Níquel/farmacologia , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp/métodos , Serotonina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Ubiquitina Tiolesterase/metabolismo , Proteína Wnt1
18.
Am J Physiol Gastrointest Liver Physiol ; 303(3): G404-11, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22628035

RESUMO

The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 µM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.


Assuntos
Colo/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Neurônios Aferentes/fisiologia , Reto/inervação , Animais , Betanecol/farmacologia , Colo/inervação , Iodeto de Dimetilfenilpiperazina/farmacologia , Feminino , Técnicas In Vitro , Masculino , Mecanorreceptores/fisiologia , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Complexo Mioelétrico Migratório/efeitos dos fármacos , Estimulação Física
19.
Huan Jing Ke Xue ; 43(11): 5140-5148, 2022 Nov 08.
Artigo em Zh | MEDLINE | ID: mdl-36437086

RESUMO

Due to the long-term excessive fertilization in the vegetable system in China, nitrogen use efficiency (NUE) is low, and the environmental problem is serious. Nitrogen fertilizer combined with nitrification inhibitor is an effective strategy to alleviate the loss of active nitrogen and increase vegetable yield. However, systematic research on the above is lacking. Meta-analysis was used to systematically analyze the effects of nitrogen fertilizer combined with nitrification inhibitors[dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and 2-chloro-6-(trichloromethyl)pyridine (NP)] on the yield, plant nitrogen uptake, nitrogen fertilizer use efficiency, and nitrous oxide emission reduction effects in vegetable production in China. This study further revealed the impacts of different field management measures on their effects. The results showed that the combination of nitrogen fertilizer and nitrification inhibitor could significantly increase vegetable yield (9.2%), plant nitrogen uptake (10.4%), and nitrogen fertilizer use efficiency (11.2%) but reduce nitrous oxide emissions (28.4%). Among the different types of nitrification inhibitors, NP had the highest impact on the yield-increasing effect and the nitrous oxide emission reduction effect, which were 16.1% and 32.0%, respectively, followed by that of DMPP and DCD. Nitrification inhibitors could significantly increase vegetable yield (6.7%-14.7%) and reduce N2O emissions (14.6%-36.8%) in different nitrogen fertilizer rates. In neutral and alkaline vegetable soil, the yield-increasing effect and the reduction effect of nitrous oxide were higher than those in acidic soil. Nitrification inhibitors had significant effects on yield increase and nitrous oxide reduction under the conditions of greenhouse or open-field cultivation, root vegetables, and leafy vegetables. Principal component analysis (PCA) showed that soil total nitrogen content and soil pH were the main factors that promoted the increase in vegetable yields and drove nitrous oxide emissions under the application of nitrification inhibitors. In summary, nitrification inhibitors were an important measure to achieve the goal of improving quality and fertilizer use efficiency, while saving fertilizer and reducing emissions in vegetable production. Farmers should choose suitable types of nitrification inhibitors according to soil and field management measures to maximize their effectiveness.


Assuntos
Fertilizantes , Óxido Nitroso , Fertilizantes/análise , Óxido Nitroso/análise , Nitrogênio/análise , Verduras , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Solo/química
20.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1027-1036, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35543056

RESUMO

We examined the effects of biochar and urease inhibitors/nitrification inhibitors on nitrification process, ammonia and N2O emission in subtropical soil, and determined the best combination of biochar with nitrification and urease inhibitors. This work could provide a theoretical basis for the mitigation of the negative environmental risk caused by reactive nitrogen gas in the application of nitrogen fertilizer. A indoor aerobic culture test was conducted with seven treatments [urea+biochar (NB), urea+nitrification inhibitor (N+NI), urea+urease inhibitor (N+UI), urea+nitrification inhibitor+urease inhibitor (N+NIUI), urea+nitrification inhibitor+biochar (NB+NI), urea+urease inhibitor+biochar (NB+UI), urea+nitrification inhibitor+urease inhibitor+biochar (NB+NIUI)] and urea (N) as the control. The dynamics of soil inorganic nitrogen content, N2O emission and the volatility of ammonia volatilization were observed under combined application of biochar with urease inhibitor (NBPT)/nitrification inhibitor (DMPP). The results showed that:1)Compared to the control (5.11 mg N·kg-1·d-1) during the incubation period, NB treatment significantly increased therate constant of nitrification by 33.9%, and N+NI treatment significantly reduced the nitrification rate constant by 22.9%. NB treatment significantly increased the abundance of ammonia oxidizing bacteria (AOB) by 56.0%. 2) Compared with N treatment, N+NI and NB+NI treatments signi-ficantly enhanced the cumulative emission of NH3 by 49%. The N+UI treatment reduced the cumulative loss of NH3. The inhibition effect of NB+UI treatment was more significant. 3) The emission rate of N2O was highest in the first 10 days after fertilization. The N2O emission under NB treatment was the earliest, and that of N treatment was the highest (5.87 µg·kg-1·h-1). The combined application of DMPP and NBPT performed the best in reducing soil N2O emission. We estimated global warming potential (GWP) of the direct N2O and indirect N2O (NH3) emissions. Compared with N treatments, N+NI and NB+NI treatments increased the GWP by 34.8% and 40.9%, respectively. While the NB and NB+UI treatments significantly reduced the GWP by 45.9% and 60.5%, the combination of biochar and urease inhibitor had the best effect on reduction of GWP of soil active nitrogen emissions.


Assuntos
Nitrificação , Solo , Agricultura/métodos , Amônia/análise , Carvão Vegetal , Iodeto de Dimetilfenilpiperazina/farmacologia , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Ureia , Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA