Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.622
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113466

RESUMO

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Assuntos
DNA Polimerase Dirigida por RNA , Retroelementos , Alanina/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA , RNA Polimerases Dirigidas por DNA/genética , Humanos , Íntrons , Isoleucina/genética , DNA Polimerase Dirigida por RNA/química
2.
Mol Cell ; 82(2): 447-462.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34856123

RESUMO

Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.


Assuntos
Acil Coenzima A/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Histonas/metabolismo , Metabolômica , Processamento de Proteína Pós-Traducional , Animais , Diferenciação Celular , Cromatografia Líquida , Citosol/metabolismo , Epigênese Genética , Células Hep G2 , Humanos , Isoleucina , Metaboloma , Camundongos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
3.
Annu Rev Microbiol ; 77: 479-497, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339735

RESUMO

Amino acids are indispensable substrates for protein synthesis in all organisms and incorporated into diverse aspects of metabolic physiology and signaling. However, animals lack the ability to synthesize several of them and must acquire these essential amino acids from their diet or perhaps their associated microbial communities. The essential amino acids therefore occupy a unique position in the health of animals and their relationships with microbes. Here we review recent work connecting microbial production and metabolism of essential amino acids to host biology, and the reciprocal impacts of host metabolism of essential amino acids on their associated microbes. We focus on the roles of the branched-chain amino acids (valine, leucine, and isoleucine) and tryptophan on host-microbe communication in the intestine of humans and other vertebrates. We then conclude by highlighting research questions surrounding the less-understood aspects of microbial essential amino acid synthesis in animal hosts.


Assuntos
Aminoácidos Essenciais , Interações entre Hospedeiro e Microrganismos , Animais , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Leucina , Isoleucina
4.
Nature ; 593(7859): 391-398, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012085

RESUMO

Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-L-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1-4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and L-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions-Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.


Assuntos
Amidas/metabolismo , Ligases/química , Ligases/metabolismo , Amidas/química , Aminoácidos/biossíntese , Aminoácidos/química , Azospirillum lipoferum/enzimologia , Azospirillum lipoferum/genética , Ácidos Carboxílicos/metabolismo , Ciclopentanos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Indenos/química , Isoleucina/análogos & derivados , Isoleucina/biossíntese , Isoleucina/química , Cinética , Modelos Moleculares , Pectobacterium/enzimologia , Pectobacterium/genética , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética
5.
Plant Cell ; 35(6): 2232-2250, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36891818

RESUMO

Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Silício/metabolismo , Silício/farmacologia , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
6.
Plant Cell ; 35(10): 3712-3738, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37462265

RESUMO

F-box proteins have diverse functions in eukaryotic organisms, including plants, mainly targeting proteins for 26S proteasomal degradation. Here, we demonstrate the role of the F-box protein SKP1-INTERACTING PARTNER 31 (SKIP31) from Arabidopsis (Arabidopsis thaliana) in regulating late seed maturation events, seed vigor, and viability through biochemical and genetic studies using skip31 mutants and different transgenic lines. We show that SKIP31 is predominantly expressed in seeds and that SKIP31 interacts with JASMONATE ZIM DOMAIN (JAZ) proteins, key repressors in jasmonate (JA) signaling, directing their ubiquitination for proteasomal degradation independently of coronatine/jasmonic acid-isoleucine (JA-Ile), in contrast to CORONATINE INSENSITIVE 1, which sends JAZs for degradation in a coronatine/JA-Ile dependent manner. Moreover, JAZ proteins interact with the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and repress its transcriptional activity, which in turn directly or indirectly represses the expression of downstream genes involved in the accumulation of LATE EMBRYOGENESIS ABUNDANT proteins, protective metabolites, storage compounds, and abscisic acid biosynthesis. However, SKIP31 targets JAZ proteins, deregulates ABI5 activity, and positively regulates seed maturation and consequently seed vigor. Furthermore, ABI5 positively influences SKIP31 expression, while JAZ proteins repress ABI5-mediated transactivation of SKIP31 and exert feedback regulation. Taken together, our findings reveal the role of the SKIP31-JAZ-ABI5 module in seed maturation and consequently, establishment of seed vigor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Isoleucina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas F-Box/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Cell ; 147(2): 306-19, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000011

RESUMO

Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Benzamidas , Células Cultivadas , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Isoleucina/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais , Domínios de Homologia de src
8.
Proc Natl Acad Sci U S A ; 120(16): e2214430120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040399

RESUMO

A previously reported autoreactive antigen, termed the X-idiotype, isolated from a unique cell population in Type 1 diabetes (T1D) patients, was found to stimulate their CD4+ T cells. This antigen was previously determined to bind more favorably than insulin and its mimic (insulin superagonist) to HLA-DQ8, supporting its strong role in CD4+ T cell activation. In this work, we probed HLA-X-idiotype-TCR binding and designed enhanced-reactive pHLA-TCR antigens using an in silico mutagenesis approach which we functionally validated by cell proliferation assays and flow cytometry. From a combination of single, double, and swap mutations, we identified antigen-binding sites p4 and p6 as potential mutation sites for HLA binding affinity enhancement. Site p6 is revealed to favor smaller but more hydrophobic residues than the native tyrosine, such as valine (Y6V) and isoleucine (Y6I), indicating a steric mechanism in binding affinity improvement. Meanwhile, site p4 methionine mutation to hydrophobic residues isoleucine (M4I) or leucine (M4L) modestly increases HLA binding affinity. Select p6 mutations to cysteine (Y6C) or isoleucine (Y6I) exhibit favorable TCR binding affinities, while a swap p5-p6 tyrosine-valine double mutant (V5Y_Y6V) and a p6-p7 glutamine-glutamine double mutant (Y6Q_Y7Q) exhibit enhanced HLA binding affinity but weakened TCR affinity. This work holds relevance to potential T1D antigen-based vaccine design and optimization.


Assuntos
Diabetes Mellitus Tipo 1 , Vacinas , Humanos , Autoantígenos , Glutamina , Isoleucina , Insulina , Receptores de Antígenos de Linfócitos T , Mutagênese
9.
J Biol Chem ; 300(2): 105634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199571

RESUMO

Diabetes mellitus (DM) is a risk factor for developing active tuberculosis (TB) with a 3-fold increase in susceptibility and a 4-fold higher relapse rate. With increasing DM prevalence in TB endemic regions, understanding pathophysiological changes associated with DM-TB comorbidity is imperative. In this study, streptozotocin (STZ)-induced DM C57BL/6 mice were aerosol infected with low dose (100-120 CFU) Mycobacterium tuberculosis H37Rv. At 3 weeks post infection (w.p.i.), multiple tissue mycobacterial load and metabolites were profiled. The liver proteome of DM-TB and controls were analyzed using quantitative proteomics, and multi-omics data were integrated. DM-TB mice showed dysregulated multi-tissue (lungs, liver, brain, kidney and thigh muscle) metabolism. In contrast, the mycobacterial burden in the lung, spleen and liver was similar at 3 w.p.i. in DM-TB and TB groups. Enrichment analysis of deregulated liver metabolites (n = 20; log2DM-TB/TB>±1.0) showed significant perturbation in cysteine-methionine, glycine-serine, BCAA and fatty acid metabolism. 60 out of 1660 identified liver proteins showed deregulation (log2DM-TB/TB>±1.0) and contributed from perturbed cysteine-methionine metabolism corroborating metabolomics data. In addition, amino acid biosynthesis, retinol metabolism and polyol biosynthetic process were also differentially enriched in the livers of DM-TB groups. Global correlation analysis of liver metabolome and proteome data showed a strong association between aspartic acid, pyruvic acid, leucine and isoleucine with CYP450 enzymes involved in retinol metabolism, while iminodiacetic acid, isoleucine and γ-aminobutyric acid (GABA) strong positive correlation involved in cysteine metabolism. Targeting perturbed cysteine metabolism using micro molecules, like DL-Propargylglycine, might help prevent liver damage in DM-TB comorbid conditions.


Assuntos
Diabetes Mellitus Experimental , Tuberculose , Animais , Camundongos , Cisteína , Diabetes Mellitus Experimental/complicações , Isoleucina , Fígado , Metionina , Camundongos Endogâmicos C57BL , Proteoma , Tuberculose/complicações , Vitamina A , Feminino
10.
Plant J ; 117(3): 679-693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921032

RESUMO

During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.


Assuntos
Catequina , Ciclopentanos , Isoleucina/análogos & derivados , Oxilipinas , Transcriptoma , Catequina/análise , Catequina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Melhoramento Vegetal , Chá/química , Chá/metabolismo , Hormônios/análise , Hormônios/metabolismo , Terpenos/metabolismo , Folhas de Planta/metabolismo
11.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831086

RESUMO

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Assuntos
Proteína DEAD-box 58 , Isoleucina , Receptores Imunológicos , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Tolerância Imunológica , Isoleucina/genética , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
12.
Am J Physiol Cell Physiol ; 326(4): C1178-C1192, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406825

RESUMO

K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.


Assuntos
Isoleucina , Retina , Camundongos , Humanos , Animais , Isoleucina/metabolismo , Retina/metabolismo , Cegueira/metabolismo , Mutação/genética , Treonina/metabolismo
13.
Plant J ; 115(3): 709-723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37095639

RESUMO

The oxylipin plant hormone (3R,7S)-jasmonoyl-l-isoleucine [or (+)-7-iso-jasmonoyl-l-isoleucine, JA-Ile] is widely recognized as a plant defense hormone against pathogens and chewing insects. The metabolism of JA-Ile into 12-OH-JA-Ile and 12-COOH-JA-Ile is the central mechanism for the inactivation of JA signaling. Recently, 12-OH-JA-Ile was reported to function as a ligand for the JA-Ile co-receptor COI1-JAZ. However, in previous studies, '12-OH-JA-Ile' used was a mixture of four stereoisomers, the naturally occurring cis-isomer (3R,7S)-12-OH-JA-Ile and the trans-isomer (3R,7R)-12-OH-JA-Ile, and the unnatural cis-isomer (3S,7R)-12-OH-JA-Ile and the trans-isomer (3S,7S)-12-OH-JA-Ile. Thus, the genuine bioactive form of 12-OH-JA-Ile has not yet been identified. In the present study, we prepared pure stereoisomers of 12-OH-JA-Ile and identified (3R,7S)-12-OH-JA-Ile as the naturally occurring bioactive form of 12-OH-JA-Ile and found that it binds to COI1-JAZ9 as effectively as (3R,7S)-JA-Ile. In addition, we revealed that the unnatural trans-isomer (3S,7S)-12-OH-JA-l-Ile functions as another bioactive isomer. The pure (3R,7S)-12-OH-JA-Ile causes partial JA-responsive gene expression without affecting the expression of JAZ8/10, which is involved in the negative feedback regulation of JA-signaling. Thus, (3R,7S)-12-OH-JA-Ile could cause weak and sustainable expression of certain JA-responsive genes until the catabolism of (3R,7S)-12-OH-JA-Ile into (3R,7S)-12-COOH-JA-Ile occurs. The use of chemically pure (3R,7S)-12-OH-JA-Ile confirmed the genuine biological activities of '12-OH-JA-Ile' by excluding the possible effects of other stereoisomers. A chemical supply of pure (3R,7S)-12-OH-JA-Ile with an exact bioactivity profile will enable further detailed studies of the unique role of 12-OH-JA-Ile in planta.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Isoleucina , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estereoisomerismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Proteins ; 92(1): 15-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37497770

RESUMO

Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the ß-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.


Assuntos
Isoleucina , Proteínas de Membrana , Leucina/química , Isoleucina/química , Sequência de Aminoácidos , Proteínas de Membrana/química , Aminoácidos , Proteínas de Transporte/metabolismo
15.
J Biomol NMR ; 78(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37816933

RESUMO

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.


Assuntos
Isoleucina , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular
16.
Anal Chem ; 96(6): 2666-2675, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297457

RESUMO

Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.


Assuntos
Aminoácidos , Isoleucina , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Leucina , Espectrometria de Massa com Cromatografia Líquida , Treonina , Íons
17.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598329

RESUMO

Many statistical methods for pathway analysis have been used to identify pathways associated with the disease along with biological factors such as genes and proteins. However, most pathway analysis methods neglect the complex nonlinear relationship between biological factors and pathways. In this study, we propose a Deep-learning pathway analysis using Hierarchical structured CoMponent models (DeepHisCoM) that utilize deep learning to consider a nonlinear complex contribution of biological factors to pathways by constructing a multilayered model which accounts for hierarchical biological structure. Through simulation studies, DeepHisCoM was shown to have a higher power in the nonlinear pathway effect and comparable power for the linear pathway effect when compared to the conventional pathway methods. Application to hepatocellular carcinoma (HCC) omics datasets, including metabolomic, transcriptomic and metagenomic datasets, demonstrated that DeepHisCoM successfully identified three well-known pathways that are highly associated with HCC, such as lysine degradation, valine, leucine and isoleucine biosynthesis and phenylalanine, tyrosine and tryptophan. Application to the coronavirus disease-2019 (COVID-19) single-nucleotide polymorphism (SNP) dataset also showed that DeepHisCoM identified four pathways that are highly associated with the severity of COVID-19, such as mitogen-activated protein kinase (MAPK) signaling pathway, gonadotropin-releasing hormone (GnRH) signaling pathway, hypertrophic cardiomyopathy and dilated cardiomyopathy. Codes are available at https://github.com/chanwoo-park-official/DeepHisCoM.


Assuntos
COVID-19 , Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Fatores Biológicos , Carcinoma Hepatocelular/genética , Hormônio Liberador de Gonadotropina , Isoleucina , Leucina , Lisina , Proteínas Quinases Ativadas por Mitógeno , Fenilalanina , Triptofano , Tirosina , Valina
18.
Mol Genet Metab ; 141(3): 108123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219674

RESUMO

OBJECTIVES: Inherited amino-acid metabolism disorders (IAAMDs) require lifelong protein-restricted diet. We aimed to investigate: 1/ whether IAAMDs was associated with growth, pubertal, bone mineral apparent density (BMAD) or body composition impairments; 2/ associations linking height, amino-acid mixture (AAM), plasma amino-acids and IGF1 concentrations. DESIGN: Retrospective longitudinal study of 213 patients with neonatal-onset urea cycle disorders (UCD,n = 77), organic aciduria (OA,n = 89), maple syrup urine disease (MSUD,n = 34), or tyrosinaemia type 1 (n = 13). METHODS: We collected growth parameters, pubertal status, BMAD, body composition, protein-intake, and IGF1 throughout growth. RESULTS: Overall final height (n = 69) was below target height (TH): -0.9(1.4) vs. -0.1(0.9) SD, p < 0.001. Final height was ≤ TH-2SD in 12 (21%) patients. Height ≤ - 2SD was more frequent during puberty than during early-infancy and pre-puberty: 23.5% vs. 6.9%, p = 0.002; and vs. 10.7%, p < 0.001. Pubertal delay was frequent (26.7%). Height (SD) was positively associated with isoleucine concentration: ß, 0.008; 95%CI, 0.003 to 0.012; p = 0.001. In the pubertal subgroup, height (SD) was lower in patients with vs. without AAM supplementation: -1.22 (1.40) vs. -0.63 (1.46) (p = 0.02). In OA, height and median (IQR) isoleucine and valine concentrations(µmol/L) during puberty were lower in patients with vs. without AAM supplementation: -1.75 (1.30) vs. -0.33 (1.55) SD, p < 0.001; and 40 (23) vs. 60 (25) (p = 0.02) and 138 (92) vs. 191 (63) (p = 0.01), respectively. No correlation was found with IGF1. Lean-mass index was lower than fat-mass index: -2.03 (1.15) vs. -0.44 (0.89), p < 0.001. CONCLUSIONS: In IAAMDs, growth retardation worsened during puberty which was delayed in all disease subgroups. Height seems linked to the disease, AAM composition and lower isoleucine concentration, independently of the GH-IGF1 pathway. We recommend close monitoring of diet during puberty.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doença da Urina de Xarope de Bordo , Recém-Nascido , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Isoleucina , Transtornos do Crescimento , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos , Estatura
19.
New Phytol ; 242(3): 1289-1306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426573

RESUMO

Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.


Assuntos
Alternaria , Isoleucina/análogos & derivados , Nicotiana , Reguladores de Crescimento de Plantas , Sesquiterpenos , Nicotiana/genética , Fitoalexinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant Cell Environ ; 47(4): 1397-1415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229005

RESUMO

Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Isoleucina/análogos & derivados , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoleucina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA