Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 119: e240038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985089

RESUMO

BACKGROUND: Leishmania (Viannia) braziliensis Thor strain exhibits a heterogeneous composition comprised of subpopulations with varying levels of infectivity. Clonal subpopulations were previously obtained from the strain Thor by sorting single-parasites and proceeding cultivation. The subpopulations used in this study are named Thor03, Thor 10 and Thor22. OBJECTIVES: Phenotypic characteristics of the parasite, specially focusing on virulence factors and resistance to the antimicrobial mechanisms of macrophages, were investigate in these subpopulations. METHODS: Cellular and molecular biology, as well as biochemistry approaches were applied to obtain the data analysed in this study. FINDINGS: Relative quantification of gene expression was measured for calpain, cysteine protease B (CPB), and subtilisin proteases but no significant differences in these genes' expression among subpopulations was observed. However, subtilisin and CPB proteins were assessed as more abundant in Thor03 by fluorescence-labelled flow cytometry technique. Western Blotting assays, as semi-quantitative analysis in gel, showed higher concentrations of subtilisin (110 to 50 kDa) and CPB (40 to 18 kDa) in extract of intracellular amastigotes from subpopulations Thor03 and Thor10 and calpain (60 to 25 kDa) showed no significant differences among subpopulations. Complementary, higher trypanothione reductase activity was observed in Thor10 intracellular amastigotes and assays of susceptibility to hydrogen peroxide-inducing agents and nitric oxide donors conducted with promastigotes revealed greater resistance to in vitro oxidative stress induction for Thor10, followed by Thor03. MAIN CONCLUSIONS: The data obtained for the virulence factors explored here suggest how multiple coexisting phenotypic-distinct subpopulations may contribute in adaptability of a single L. (V.) braziliensis strain during infection in the host cells.


Assuntos
Leishmania braziliensis , Leishmania braziliensis/enzimologia , Leishmania braziliensis/genética , Leishmania braziliensis/efeitos dos fármacos , Animais , Macrófagos/parasitologia , Western Blotting , Citometria de Fluxo , Fatores de Virulência , Peptídeo Hidrolases/metabolismo , Fenótipo , NADH NADPH Oxirredutases
2.
Exp Parasitol ; 233: 108206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973293

RESUMO

The use of ketoconazole (KTZ) plus pentamidine (PMD) could be an interesting treatment option for New World cutaneous leishmaniasis. The aim of this work was to generate KTZ- and PMD-resistant strains and to determine some characteristics of the selection process and the resulting parasites. Resistance to one or two drugs was selected on promastigotes by progressively increasing drug concentrations for eleven months. The resistance levels (IC50) to one or two drugs (synergism assay) were determined using a colorimetric resazurin methodology. The stability of the resistance phenotype (without drug pressure or after mouse passage), cross resistance with paromomycin and miltefosine, and resistance transference to intracellular amastigotes were determined. In addition, some parasite attributes compared with WT, such as growth kinetics, amastigogenesis, THP-1 cells, and mouse infection, were determined. Promastigotes resistant to KTZ or PMD were obtained three times earlier than the combined KTZ + PMD-resistant strains. Resistant parasites (promastigotes and intracellular amastigotes) were three to twelve times less susceptible to KTZ and PMD than WT parasites. The resistance phenotype on parasites was unstable, and no cross resistance was observed. Similar parasite fitness related to our evaluated characteristics was observed except for in vivo infection, where a delay of the onset of cutaneous lesions was observed after KTZ + PMD-resistant parasite infection. CONCLUSION: Combined treatment with KTZ and PMD delayed the onset of parasite resistance and was more effective in vitro than each drug separately for WT and all resistant strains. Parasites resistant to KTZ and PMD acquired similar in vitro behaviour to WT parasites, were less virulent to mice and maintained their resistance phenotype on intracellular amastigotes but not without drug pressure or after mouse infection.


Assuntos
Antiprotozoários/farmacologia , Cetoconazol/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Pentamidina/farmacologia , Análise de Variância , Animais , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Concentração Inibidora 50 , Leishmaniose Cutânea/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1
3.
Parasite Immunol ; 43(3): e12805, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131089

RESUMO

Leishmania braziliensis is the main causative agent of American tegumentary leishmaniasis in Brazil. Current treatment includes different drugs that have important side effects and identification of cases of parasite resistance to treatment support the search for new therapeutic strategies. Recent findings have indicated that CXCL10, a chemokine that recruits and activates Th1 cells, NK cells, macrophages, dendritic cells and B lymphocytes, is a potential alternative to treat Leishmania infection. Here, we tested CXCL10 immunotherapy against experimental infection caused by an antimony-resistant isolate of Leishmania braziliensis. Following infection, mice were treated with CXCL10 for 7 days after onset of lesions. We demonstrate that mice treated with CXCL10 controlled lesion progression and parasite burden more efficiently comparing to controls. An increased IFN-γ, IL-10, TGF-ß and low IL-4 production combined with a distinct inflammatory infiltrate composed by activated macrophages, lymphocytes and granulomas was observed in the CXCL10-treated group comparing to controls. However, CXCL10 and Glucantime combined therapy did not improve CXCL10-induced protective effect. Our findings reinforce the potential of CXCL10 immunotherapy as an alternative treatment against infection caused by L. braziliensis resistant to conventional chemotherapy.


Assuntos
Quimiocina CXCL10/uso terapêutico , Fatores Imunológicos/uso terapêutico , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Animais , Antimônio/farmacologia , Brasil , Feminino , Interleucina-10/imunologia , Leishmania braziliensis/imunologia , Leishmania braziliensis/isolamento & purificação , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Células Th1/imunologia
4.
Parasitol Res ; 120(9): 3273-3285, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34363115

RESUMO

Leishmaniasis, included in the priority list of the WHO, remains as a neglected disease caused by parasites of the Leishmania genus. There is no vaccine available for human leishmaniasis, and the current treatment is based on old drugs that cause serious side effects. Herein, we initially studied the cellular distribution of the virulence factor gp63, the major metallopeptidase, in a virulent strain of Leishmania braziliensis, and then we measured the inhibitory effects of 1,10-phenanthroline-5,6-dione (phendione), and its metal complexes, [Cu(phendione)3](ClO4)2.4H2O and [Ag(phendione)2]ClO4, on both cellular and extracellular metallopeptidases produced by promastigotes. The action of the three compounds on parasite viability and on parasite-macrophage interaction was also determined. Gp63 molecules were detected in several parasite compartments, including the cytoplasm, the membrane lining the cell body and flagellum, and in the flagellar pocket, which explains the presence of gp63 in the culture medium. The test compounds inhibited parasite metallopeptidases in a typical dose-dependent manner, and they also caused a significant and irreversible inhibition of parasite motility. Moreover, the pre-treatment of promastigotes with the test compounds induced a decrease in the association index with macrophages. Collectively, phendione and its Cu(II) and Ag(I) complexes are excellent prototypes for the development of new anti-L. braziliensis drugs.


Assuntos
Leishmania braziliensis , Macrófagos/parasitologia , Fenantrolinas , Cobre , Humanos , Leishmania braziliensis/efeitos dos fármacos , Fenantrolinas/farmacologia , Prata
5.
Parasitol Res ; 120(6): 2199-2218, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33963899

RESUMO

Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 µM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 µM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 µM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.


Assuntos
Amidas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Piperidonas/farmacologia , Tripanossomicidas/farmacologia , Amidas/química , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , Piperidonas/química , Células Vero
6.
Parasitol Res ; 120(9): 3307-3317, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34370070

RESUMO

The aim of this study was to synthesize several small molecules of the type 5-nitroimidazole-sulfanyl and evaluate biological properties against the main Leishmania species that cause cutaneous leishmaniasis in Venezuela. Final compounds 4-7 were generated through simple nucleophilic substitution of 1-(2-chloroethyl)-2-methyl-5-nitroimidazole 3 with 2-mercaptoethanol, 1-methyl-2-mercaptoethanol, and 2-thyolacetic acid derivative. Compound 8 was synthesized via a coupling reaction between 7 and (S)-Methyl 2-amino-4-methylpentanoate hydrochloride. The inhibitory concentrations of (3, 4, 7, 8) against Leishmania (L.) mexicana and (V.) braziliensis in promastigotes and experimentally infected macrophages were determined by in vitro activity assays. Compounds 7 and 8 shown high activity against both species of Leishmania and were selected for the in vivo evaluation. Animals were infected with promastigotes of the two species and divided into four groups of ten (10) animals and a control group. Intralesional injection way was used for the treatment. The parasitological diagnostic after treatment was obtained by PCR using species specific oligonucleotides. The two Leishmania species were susceptible to compounds 7 and 8 in vivo assays. The results indicated that both compounds reduce significantly (96%) the size of the lesion and cure 63% of the mice infected with L (L) mexicana or L (V) braziliensis as was determined by PCR. The results are indicating that both compounds may represent an alternative treatment for these two Leishmania species.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmania mexicana , Leishmaniose Cutânea , Nitroimidazóis , Animais , Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Nitroimidazóis/farmacologia
7.
Parasitol Res ; 120(2): 705-713, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415404

RESUMO

Leishmaniasis is one of the most neglected parasitic infections of the world and current therapeutic options show several limitations. In the search for more effective drugs, plant compounds represent a powerful natural source. Artemisinin is a sesquiterpene lactone extracted from Artemisia annua L. leaves, from which dihydroartemisinin (DQHS) and artesunic acid (AA)/artesunate are examples of active derivatives. These lactones have been applied successfully on malaria therapy for decades. Herein, we investigated the sensitivity of Leishmania braziliensis, one of the most prevalent Leishmania species that cause cutaneous manifestations in the New World, to artemisinin, DQHS, and AA. L. braziliensis promastigotes and the stage that is targeted for therapy, intracelular amastigotes, were more sensitive to DQHS, showing EC50 of 62.3 ± 1.8 and 8.9 ± 0.9 µM, respectively. Cytotoxicity assays showed that 50% of bone marrow-derived macrophages cultures were inhibited with 292.8 ± 3.8 µM of artemisinin, 236.2 ± 4.0 µM of DQHS, and 396.8 ± 6.7 µM of AA. The control of intracellular infection may not be essentially attributed to the production of nitric oxide. However, direct effects on mitochondrial bioenergetics and H2O2 production appear to be associated with the leishmanicidal effect of DQHS. Our data provide support for further studies of artemisinin and derivatives repositioning for experimental leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Artemisininas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Leishmania braziliensis/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Mitocôndrias/metabolismo , Succinatos/farmacologia
8.
Lasers Med Sci ; 36(4): 821-827, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32748166

RESUMO

Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.


Assuntos
Leishmania braziliensis/metabolismo , Azul de Metileno/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/efeitos da radiação , Proteínas de Protozoários/metabolismo
9.
Drug Dev Res ; 82(2): 230-240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996619

RESUMO

In this article, a series of 29 new pyrimidine N-acylhydrazone hybrids were synthesized and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi protozoa that cause the neglected diseases cutaneous leishmaniasis and Chagas disease, respectively. Eight of the target compounds showed significant antiprotozoal activities with IC50 values in 4.3-33.6 µM range. The more active compound 4f exhibited selectivity index greater than 15 and drug-like properties based on Lipinski's rule.


Assuntos
Antiparasitários/farmacologia , Hidrazonas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Pirimidinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/química , Humanos , Hidrazonas/química , Leishmania braziliensis/fisiologia , Pirimidinas/química , Trypanosoma cruzi/fisiologia
10.
Exp Parasitol ; 216: 107940, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562606

RESUMO

Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.


Assuntos
Alternativas aos Testes com Animais/métodos , Antiprotozoários/toxicidade , Citometria de Fluxo/métodos , Leishmania/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Adulto , Anfotericina B/farmacologia , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Leucócitos/parasitologia , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antimoniato de Meglumina/toxicidade , Microscopia Confocal , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/parasitologia , Fatores de Tempo , Adulto Jovem
11.
J Enzyme Inhib Med Chem ; 35(1): 639-649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32048531

RESUMO

Leishmaniasis is a neglected disease caused by the protozoa Leishmania ssp. Environmental differences found by the parasites in the vector and the host are translated into cellular stress, leading to the production of heat shock proteins (Hsp). These are molecular chaperones involved in the folding of nascent proteins as well as in the regulation of gene expression, signalling events and proteostasis. Since Leishmania spp. use Hsp90 to trigger important transitions between their different stages of the life cycle, this protein family becomes a profitable target in anti-parasite drug discovery. In this work, we implemented a multidisciplinary strategy coupling molecular modelling with in vitro assays to identify small molecules able to inhibit Hsp90 from L. braziliensis (LbHsp90). Overall, we identified some compounds able to kill the promastigote form of the L. braziliensis, and to inhibit LbHsp90 ATPase activity.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Leishmania braziliensis/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas de Choque Térmico HSP90/metabolismo , Leishmania braziliensis/química , Modelos Moleculares , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
Mem Inst Oswaldo Cruz ; 115: e190408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32321156

RESUMO

BACKGROUND: The mechanism of resistance to SbIII in Leishmania is complex, multifactorial and involves not only biochemical mechanisms, but also other elements, such as the immune system of the host. OBJECTIVES: In this study, putative changes in the immunological profile of human monocytes infected with wild-type (WT) and antimony (SbIII)-resistant Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum lines were evaluated. METHODS: Susceptibility assays WT and SbIII-resistant L. braziliensis and L. infantum were performed using lines THP-1 human monocytic lineage. Phagocytic capacity, cytokine profile, intracellular nitric oxide (NO) production and surface carbohydrate residues profile were performed in peripheral blood monocytes by flow cytometry. FINDINGS: The phagocytic capacity and intracellular NO production by classical (CD14++CD16-) and proinflammatory (CD14++CD16+) monocytes were higher in the presence of L. infantum lines compared to L. braziliensis lines. The results also highlight proinflammatory monocytes as the cellular subpopulation of major relevance in a phagocytosis event and NO expression. It is important to note that L. infantum induced a proinflammatory cytokine profile characterised by higher levels of TNF-α in culture supernatant than L. braziliensis. Conversely, both Leishmania lines induce high levels of IL-6 in culture supernatant. Analysis of the expression profile of surface carbohydrates showed that L. braziliensis presents 4.3-fold higher expression of galactose(ß1,4)N-acetylglucosamine than L. infantum line. Interestingly, the expression level of α-N-acetylgalactosamine residues was 2-fold lower in the SbIII-resistant L. braziliensis line than its counterpart WT line, indicating differences in surface glycoconjugates between these lines. MAIN CONCLUSIONS: Our results showed that L. braziliensis and L. infantum induce different innate immune responses and a highly inflammatory profile, which is characteristic of infection by L. infantum, the species associated with visceral disease.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Leishmania braziliensis/imunologia , Leishmania infantum/imunologia , Monócitos/parasitologia , Óxido Nítrico/biossíntese , Fagocitose/imunologia , Adulto , Resistência a Medicamentos , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Masculino , Monócitos/imunologia , Adulto Jovem
13.
Mem Inst Oswaldo Cruz ; 115: e190469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638832

RESUMO

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Assuntos
Antimônio/toxicidade , Proteínas de Escherichia coli/genética , Escherichia coli , Guanina/análogos & derivados , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Pirofosfatases , Superóxido Dismutase/metabolismo , Animais , Antiprotozoários/farmacologia , Proteínas de Escherichia coli/metabolismo , Guanina/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Leishmania braziliensis/enzimologia , Leishmania infantum/enzimologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , Coelhos , Ratos , Superóxido Dismutase/genética
14.
Parasitol Res ; 119(7): 2263-2274, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462293

RESUMO

Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds. Pteridine reductase 1 (PTR1), a validated target in Leishmania sp., is responsible for the reduction of folate and biopterin to tetrahydrofolate and tetrahydrobiopterin, respectively, both of which are essential for cell growth. In addition to the in vitro evaluation of 16 thiazolidine-2,4-dione derivatives against Leishmania major PTR1 (LmPTR1), using the differential scanning fluorimetry (ThermoFluor®), phenotypic assays were employed to evaluate the compound effect over Leishmania braziliensis (MHOM/BR/75/M2903) and Leishmania infantum (MHOM/BR/74/PP75) promastigotes viability. The ThermoFluor® results show that thiazolidine-2,4-dione derivatives have micromolar affinity to the target and equivalent activity on Leishmania cells. 2b is the most potent compound against L. infantum (EC50 = 23.45 ± 4.54 µM), whereas 2a is the most potent against L. braziliensis (EC50 = 44.16 ± 5.77 µM). This result suggests that lipophilic substituents on either-meta and/or-para positions of the benzylidene ring increase the potency against L. infantum. On the other hand, compound 2c (CE50 = 49.22 ± 7.71 µM) presented the highest selectivity index.


Assuntos
Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Antiprotozoários/química , Humanos , Leishmania braziliensis/enzimologia , Leishmania infantum/enzimologia , Oxirredutases/antagonistas & inibidores , Testes de Sensibilidade Parasitária , Tiazolidinedionas/química
15.
Arch Pharm (Weinheim) ; 353(12): e2000157, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33252148

RESUMO

Chalcones are a group of natural products with many recognized biological activities, including antiparasitic activity. Although a lot of chalcones have been synthetized and assayed against parasites, the number of structural features known to be involved in this biological property is small. Thus, in the present study, 21 chalcones were synthesized to determine the effect of substituents in the A and B rings on the activity against Leishmania braziliensis, Trypanosoma cruzi, and Plasmodium falciparum. The compounds were active against L. braziliensis in a structure-dependent manner. Only one compound was very active against T. cruzi, but none of them had a significant antiplasmodial activity. The electron-donating substituents in ring B and the hydrogen bonds at C-2' with carbonyl affect the antiparasitic activity.


Assuntos
Chalconas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/toxicidade , Desenho de Fármacos , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade , Células U937
16.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664596

RESUMO

In low-income populations, neglected diseases are the principal cause of mortality. Of these, leishmaniasis and malaria, being parasitic, protozoan infections, affect millions of people worldwide and are creating a public health problem. The present work evaluates the leishmanicidal and antiplasmodial action of a series of twelve p-coumaric acid derivatives. Of the tested derivatives, eight presented antiparasitic activities 1-3, 8-12. The hexyl p-coumarate derivative (9) (4.14 ± 0.55 µg/mL; selectivity index (SI) = 2.72) showed the highest leishmanicidal potency against the Leishmania braziliensis amastigote form. The results of the molecular docking study suggest that this compound inhibits aldehyde dehydrogenase (ALDH), mitogen-activated kinase protein (MPK4), and DNA topoisomerase 2 (TOP2), all of which are key enzymes in the development of Leishmania braziliensis. The data indicate that these enzymes interact via Van der Waals bonds, hydrophobic interactions, and hydrogen bonds with phenolic and aliphatic parts of this same compound. Of the other compounds analyzed, methyl p-coumarate (64.59 ± 2.89 µg/mL; IS = 0.1) demonstrated bioactivity against Plasmodium falciparum. The study reveals that esters presenting a p-coumarate substructure are promising for use in synthesis of derivatives with good antiparasitic profiles.


Assuntos
Antimaláricos/farmacologia , Ácidos Cumáricos/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Linhagem Celular , Humanos , Simulação de Dinâmica Molecular , Células U937
17.
Molecules ; 25(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325815

RESUMO

In this study, a family of porphyrins based on 5,10,15,20-Tetrakis(4-ethylphenyl)porphyrin (1, Ph) and six metallo-derivatives (Zn2+(2, Ph-Zn), Sn4+(3, Ph-Sn), Mn2+ (4, Ph-Mn), Ni2+ (5, Ph-Ni), Al3+ (6, Ph-Al), and V3+ (7, Ph-V)) were tested as photosensitizers for photodynamic therapy against Leishmania braziliensis and panamensis. The singlet oxygen quantum yield value (ΦΔ) for (1-7) was measured using 1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen trapping agent and 5,10,15,20-(tetraphenyl)-porphyrin (H2TPP) as a reference standard; besides, parasite viability was estimated by the MTT assay. After metal insertion into the porphyrin core, the ΦΔ increased from 0.76-0.90 and cell viability changed considerably. The ΦΔ and metal type changed the cytotoxic activity. Finally, (2) showed both the highest ΦΔ (0.90) and the best photodynamic activity against the parasites studied (IC50 of 1.2 µM).


Assuntos
Leishmania braziliensis/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Metaloporfirinas/química , Metaloporfirinas/toxicidade , Fármacos Fotossensibilizantes/química , Porfirinas/química , Oxigênio Singlete/química , Benzofuranos/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Concentração Inibidora 50 , Leishmania/efeitos da radiação , Leishmania braziliensis/efeitos da radiação , Luz , Metaloporfirinas/síntese química , Fotoquimioterapia , Porfirinas/síntese química , Porfirinas/toxicidade
18.
Molecules ; 25(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635469

RESUMO

Pulchrol (1) is a natural benzochromene isolated from the roots of Bourreria pulchra, shown to possess potent antiparasitic activity towards both Leishmania and Trypanozoma species. As it is not understood which molecular features of 1 are important for the antiparasitic activity, several analogues were synthesized and assayed. The ultimate goal is to understand the structure-activity relationships (SAR:s) and create a QSAR model that can be used for the development of clinically useful antiparasitic agents. In this study, we have synthesized 25 2-methoxy-6,6-dimethyl-6H-benzo[c]chromen analogues of 1 and its co-metabolite pulchral (5a), by semi-synthetic procedures starting from the natural product pulchrol (1) itself. All 27 compounds, including the two natural products 1 and 5a, were subsequently assayed in vitro for antiparasitic activity against Trypanozoma cruzi, Leishmania brasiliensis and Leishmania amazoniensis. In addition, the cytotoxicity in RAW cells was assayed, and a selectivity index (SI) for each compound and each parasite was calculated. Several compounds are more potent or equi-potent compared with the positive controls Benznidazole (Trypanozoma) and Miltefosine (Leishmania). The compounds with the highest potencies as well as SI-values are esters of 1 with various carboxylic acids.


Assuntos
Antiparasitários/farmacologia , Benzopiranos/farmacologia , Doença de Chagas/tratamento farmacológico , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Poríferos/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Animais , Álcool Benzílico/química , Doença de Chagas/parasitologia , Macrófagos/parasitologia , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 27(1): 153-160, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30482546

RESUMO

We describe the in vitro activity of two natural isomeric ent-beyerene diterpenes, several derivatives and synthetic intermediates. Beyerenols 1 and 2 showed EC50 of 4.6 ±â€¯9.4 and 5.3 ±â€¯9.4 µg/mL against amastigotes of L. (V) brazilensis, with SI of 5.1 and 7.7, respectively. Beyerenol 1 was synthesized from stevioside. In vivo experiments with bereyenols showed cure in 50% of hamsters infected with L. (V) brazilensis topically applied as Cream I (beyerenol 1, 0.81%, w/w) and Cream III (beyerenol 2, 1.96%, w/w). These results suggest that beyerenols are potential candidates for cutaneous leishmaniasis chemotherapy by topical application. In vitro assays of amastigotes of L. (V) brazilensis showed EC50 of 1.1 ±â€¯0.1 and 1.3 ±â€¯0.04 µg/mL, with SI of 3.1 and 3.5 for hydrazone intermediates 10 and 11, respectively.


Assuntos
Diterpenos/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Animais , Linhagem Celular , Diterpenos/síntese química , Diterpenos/farmacologia , Diterpenos/toxicidade , Feminino , Humanos , Leishmania braziliensis/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Mesocricetus , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade
20.
Exp Parasitol ; 198: 31-38, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30690024

RESUMO

Diverse spiro dihydroquinoline-oxindoles (JS series) were prepared using the BF3•OEt2-catalyzed imino Diels-Alder reaction between ketimine-isatin derivatives and trans-isoeugenol. Ten spiro-oxiindole derivatives were selected and evaluated at different stages of the life cycle of Leishmania braziliensis parasites, responsible for cutaneous leishmaniasis in South America. Among them, the 8'-ethyl-4'-(4-hydroxy-3-methoxyphenyl)-3'-methyl-3',4'-dihydro-1'H-spiro[indoline-3,2'-quinolin]-2-one called JS87 was able to inhibit the growth of promastigotes without affecting the mammalian cells viability, and to decrease the number of intracellular amastigotes of L. braziliensis. This spiro compound was found to act through the alteration of parasite internal regulation by disrupting the regulatory volume decrease (RVD), and to affect the sterol biosynthetic pathway at level of squalene epoxidase (SE) enzyme. These results revealed that the spiro annulation between quinoline and oxindole scaffolds enhances the anti-leishmanial activity, and could assist in the development of potent quinoline-oxindole hybrids against Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis in South America.


Assuntos
Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Oxindóis/farmacologia , Quinolinas/farmacologia , Compostos de Espiro/farmacologia , Animais , Antiprotozoários/química , Concentração Inibidora 50 , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Oxindóis/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacologia , Quinolinas/química , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA