Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572960

RESUMO

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Assuntos
Antibacterianos , Levofloxacino , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , Reserpina , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Reserpina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana/genética , Humanos , Verapamil/farmacologia
2.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38888319

RESUMO

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Assuntos
Aminoglicosídeos , Antraz , Antibacterianos , Bacillus anthracis , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Infecções Respiratórias , Animais , Lipoglicopeptídeos/farmacologia , Coelhos , Antraz/tratamento farmacológico , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Modelos Animais de Doenças , Levofloxacino/farmacologia , Feminino
3.
J Antimicrob Chemother ; 79(5): 1045-1050, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507272

RESUMO

OBJECTIVES: Staphylococcus epidermidis bone and joint infections (BJIs) on material are often difficult to treat. The activity of delafloxacin has not yet been studied on S. epidermidis in this context. The aim of this study was to assess its in vitro activity compared with other fluoroquinolones, against a large collection of S. epidermidis clinical strains. METHODS: We selected 538 S. epidermidis strains isolated between January 2015 and February 2023 from six French teaching hospitals. One hundred and fifty-two strains were ofloxacin susceptible and 386 were ofloxacin resistant. Identifications were performed by MS and MICs were determined using gradient concentration strips for ofloxacin, levofloxacin, moxifloxacin and delafloxacin. RESULTS: Ofloxacin-susceptible strains were susceptible to all fluoroquinolones. Resistant strains had higher MICs of all fluoroquinolones. Strains resistant to ofloxacin (89.1%) still showed susceptibility to delafloxacin when using the Staphylococcus aureus 2021 CA-SFM/EUCAST threshold of 0.25 mg/L. In contrast, only 3.9% of the ofloxacin-resistant strains remained susceptible to delafloxacin with the 0.016 mg/L S. aureus breakpoint according to CA-SFM/EUCAST guidelines in 2022. The MIC50 was 0.094 mg/L and the MIC90 was 0.38 mg/L. CONCLUSIONS: We showed low delafloxacin MICs for ofloxacin-susceptible S. epidermidis strains and a double population for ofloxacin-resistant strains. Despite the absence of breakpoints for S. epidermidis, delafloxacin may be an option for the treatment of complex BJI, including strains with MICs of ≤0.094 mg/L, leading to 64% susceptibility. This study underlines the importance for determining specific S. epidermidis delafloxacin breakpoints for the management of BJI on material.


Assuntos
Antibacterianos , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/isolamento & purificação , Humanos , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Estudos Retrospectivos , Ofloxacino/farmacologia , Levofloxacino/farmacologia , Farmacorresistência Bacteriana , Moxifloxacina/farmacologia , França
4.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
5.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600509

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Assuntos
COVID-19 , Coinfecção , Infecções por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacologia , Levofloxacino/farmacologia , Meropeném/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Imipenem/farmacologia , Porinas/genética , Porinas/farmacologia , Testes de Sensibilidade Microbiana
6.
Langmuir ; 40(13): 7021-7028, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501919

RESUMO

Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water. Thus, NBs provide a chance to expedite the electron-transfer kinetics within the context of PDT in an ambient environment. In this paper, we present a pioneering exploration into the impact of nitrogen nanobubbles (N2-NBs) on the electron transfer of the photosensitizer levofloxacin (LEV). Transient absorption spectra and time-resolved decay spectra, as determined through laser flash photolysis, unequivocally reveal that N2-NBs exhibit a mitigating effect on the decay of the LEV excitation triplet state, thereby facilitating subsequent processes. Of paramount significance is the observation that the presence of N2-NBs markedly accelerates the electron transfer of LEV, albeit with a marginal inhibitory influence on its energy-transfer reaction. This observation is corroborated through absorbance measurements and offers compelling evidence substantiating the role of NBs in expediting electron transfer within the ambit of PDT. The mechanism elucidated herein sheds light on how N2-NBs intricately influence both electron-transfer and energy-transfer reactions in the photosensitizer LEV. These findings not only contribute to a nuanced understanding of the underlying processes but also furnish novel insights that may inform the application of NBs in the realm of photodynamic therapy.


Assuntos
Levofloxacino , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Levofloxacino/farmacologia , Processos Fotoquímicos , Oxirredução , Transporte de Elétrons
7.
Helicobacter ; 29(2): e13060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38581134

RESUMO

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Metronidazol/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Levofloxacino/farmacologia , Equador , Antibacterianos/farmacologia , Amoxicilina/farmacologia , Tetraciclina/uso terapêutico , Tetraciclina/farmacologia , Quimioterapia Combinada
8.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965586

RESUMO

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Assuntos
Antibacterianos , Cefepima , Galinhas , Colistina , Farmacorresistência Bacteriana Múltipla , Levofloxacino , Testes de Sensibilidade Microbiana , Salmonella enterica , Sorogrupo , Animais , Egito , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Colistina/farmacologia , Levofloxacino/farmacologia , Cefepima/farmacologia , beta-Lactamases/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Salmonelose Animal/microbiologia , Humanos
9.
J Infect Chemother ; 30(7): 579-589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588797

RESUMO

INTRODUCTION: Antimicrobial susceptibility patterns of bacterial pathogens isolated from patients with complicated urinary tract infections were analyzed using the national surveillance data, comprising 793 bacterial strains from eight clinically relevant species. MATERIALS AND METHODS: Data were collected for the fourth national surveillance project from July 2020 to December 2021 by the Japanese Society of Chemotherapy, the Japanese Association for Infectious Disease, and the Japanese Society of Clinical Microbiology. Surveillance was supervised with the cooperation of 43 medical institutions throughout Japan. RESULTS: Fluoroquinolone required a minimum inhibitory concentration (MIC) of 2-64 mg/L to inhibit the 330 tested Escherichia coli strains. The proportion of levofloxacin-resistant E. coli strains increased from 28.6% in 2008 to 29.6% in 2011, 38.5% in 2015, and 44.5% in 2021. The proportion of levofloxacin-resistant strains of Pseudomonas aeruginosa also increased from previous survey results, showing a continuing downward trend. Conversely, the proportion of levofloxacin-resistant strains of Enterococcus faecalis decreased relative to previous reports. Neither multidrug-resistant P. aeruginosa nor carbapenem-resistant Enterobacteriaceae were detected. For methicillin-resistant Staphylococcus aureus (MRSA), the proportion of vancomycin-susceptible strains (MIC of 2 µg/mL) decreased from 14.7% to 7.7%. DISCUSSION: Bacterial strains that produced extended-spectrum ß-lactamase included E. coli (82/330 strains, 24.8%), Klebsiella pneumoniae (11/68 strains, 16.2%), and Proteus mirabilis (4/26 strains, 15.4%). As compared to previous surveillance reports, these strains showed an increase in proportion over the years.


Assuntos
Antibacterianos , Levofloxacino , Testes de Sensibilidade Microbiana , Infecções Urinárias , Humanos , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/tratamento farmacológico , Japão/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Farmacorresistência Bacteriana , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Feminino , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Monitoramento Epidemiológico , População do Leste Asiático
10.
Biomed Chromatogr ; 38(6): e5862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684194

RESUMO

Antibiotic-associated diarrhea is a common adverse reaction caused by the widespread use of antibiotics. The decrease in probiotics is one of the reasons why antibiotics cause drug-induced diarrhea. However, few studies have addressed the intrinsic mechanism of antibiotics inhibiting probiotics. To investigate the underlying mechanism of levofloxacin against Bifidobacterium adolescentis, we used a metabolomics mass spectrometry-based approach and molecular docking analysis for a levofloxacin-induced B. adolescentis injury model. The results showed that levofloxacin reduced the survival rate of B. adolescentis and decreased the number of B. adolescentis. The untargeted metabolomics analysis identified 27 potential biomarkers, and many of these metabolites are involved in energy metabolism, amino acid metabolism and the lipid metabolism pathway. Molecular docking showed that levofloxacin can bind with aminoacyl-tRNA synthetase and lactic acid dehydrogenase. This result provides a novel insight into the mechanism of the adverse reactions of levofloxacin.


Assuntos
Bifidobacterium adolescentis , Levofloxacino , Metabolômica , Simulação de Acoplamento Molecular , Levofloxacino/química , Levofloxacino/farmacologia , Metabolômica/métodos , Bifidobacterium adolescentis/metabolismo , Bifidobacterium adolescentis/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma/efeitos dos fármacos , Espectrometria de Massas/métodos , Antibacterianos/farmacologia , Antibacterianos/química
11.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396892

RESUMO

Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs through exposure to levofloxacin (1 × MIC) combinations with different concentrations (0.5× and 1 × MIC) of minocycline, rifampin, cefoperazone/sulbactam, or sulfamethoxazole/trimethoprim in comparison with exposure to levofloxacin alone. Of the four E. anophelis isolates that were clinically collected, lower MICs of levofloxacin were disclosed in cycle 2 and 3 of induction and selection in all levofloxacin combination groups other than levofloxacin alone (all p = 0.04). Overall, no mutations were discovered in parC and parE throughout the multicycles inducted by levofloxacin and all its combinations. Regarding the vastly increased MICs, the second point mutations in gyrA and/or gyrB in one isolate (strain no. 1) occurred in cycle 2 following exposure to levofloxacin plus 0.5 × MIC minocycline, but they were delayed appearing in cycle 5 following exposure to levofloxacin plus 1 × MIC minocycline. Similarly, the second point mutation in gyrA and/or gyrB occurred in another isolate (strain no. 3) in cycle 4 following exposure to levofloxacin plus 0.5 × MIC sulfamethoxazole/trimethoprim, but no mutation following exposure to levofloxacin plus 1 × MIC sulfamethoxazole/trimethoprim was disclosed. In conclusion, the rapid selection of E. anophelis mutants with high MICs after levofloxacin exposure could be effectively delayed or postponed by antimicrobial combination with other in vitro active antibiotics.


Assuntos
Flavobacteriaceae , Levofloxacino , Minociclina , Levofloxacino/farmacologia , Minociclina/farmacologia , DNA Girase/genética , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Sulfametoxazol , Trimetoprima , Farmacorresistência Bacteriana/genética
12.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257310

RESUMO

The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.


Assuntos
Levofloxacino , Purificação da Água , Levofloxacino/farmacologia , Sulfafenazol , Cloraminas/farmacologia , Desinfecção , Antibacterianos/farmacologia
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 248-253, 2024 Feb 06.
Artigo em Zh | MEDLINE | ID: mdl-38387958

RESUMO

By conducting retrospective analysis, this study aim to investigate the resistance mechanism of quinolones in non-typhoidal Salmonella (NTS). A total of 105 strains of NTS isolated from clinical specimens from the Fifth Affiliated Hospital of Southern Medical University from May 2020 to February 2021 were used as research objects. VITEK2 Compact automatic identification drug sensitivity analysis system and serological test were used to identify the strains. The sensitivity of the strains to ciprofloxacin, levofloxacin and nalidixic acid was detected by AGAR dilution method. The whole genome of 105 strains of NTS was sequenced. Abricate and other softwares were used to analyze drug-resistant genes, including plasmid-mediated quinolone resistance gene (PMQR) and Quinolone resistance determination region (QRDR). Serotypes and ST types were analyzed using SISTR and MLST, and phylogenetic trees were constructed. The results showed that the NTS isolated in this region were mainly ST34 Salmonella typhimurium (53.3%). The drug sensitivity results showed that the drug resistance rates of NTS to ciprofloxacin, levofloxacin and nalidixic acid were 30.4%, 1.9% and 22.0%, respectively, and the intermediate rates of ciprofloxacin and levofloxacin were 27.6% and 54.2%.A total of 46 (74.2%) of the 62 quinolone non-susceptible strains carried the PMQR gene, mainly qnrS1 (80.4%), followed by aac(6')-Ib-cr(15.2%); there were 14 NTS and 8 NTS had gyrA and parC gene mutations, respectively. The gyrA was mutations at the amino acid position 87, Asp87Tyr, Asp87Asn, Asp87Gly, and Thr57Ser mutations were detected in parC. In conclusion, this study found that NTS had relatively high resistance to quinolones, carrying qnrS1 gene mainly resulted in decreased sensitivity of NTS to ciprofloxacin and levofloxacin, and gyrA:87 mutation mainly resulted in NTS resistance to Nalidixic acid; Salmonella typhimurium in clinical isolates showed clonal transmission and required further epidemiological surveillance.


Assuntos
Quinolonas , Humanos , Quinolonas/farmacologia , Ácido Nalidíxico/farmacologia , Levofloxacino/farmacologia , Filogenia , Tipagem de Sequências Multilocus , Estudos Retrospectivos , DNA Girase/genética , Salmonella , Ciprofloxacina , Plasmídeos , Mutação , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
14.
Rev Esp Quimioter ; 37(2): 158-162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226580

RESUMO

OBJECTIVE: We assessed the in vitro activity of delafloxacin and the synergy between cefotaxime and delafloxacin among cefotaxime non-susceptible invasive isolates of Streptococcus pneumoniae (CNSSP). METHODS: A total of 30 CNSSP (cefotaxime MIC > 0.5 mg/L) were studied. Serotyping was performed by the Pneumotest-Latex and Quellung reaction. Minimum inhibitory concentrations (MICs) of delafloxacin, levofloxacin, penicillin, cefotaxime, erythromycin and vancomycin were determined by gradient diffusion strips (GDS). Synergistic activity of delafloxacin plus cefotaxime against clinical S. pneumoniae isolates was evaluated by the GDS cross method. RESULTS: Delafloxacin showed a higher pneumococcal activity than its comparator levofloxacin (MIC50, 0.004 versus 0.75 mg/L and MIC90, 0.047 versus >32 mg/L). Resistance to delafloxacin was identified in 7/30 (23.3%) isolates, belonging to serotypes 14 and 9V. Synergy between delafloxacin and cefotaxime was detected in 2 strains (serotypes 19A and 9V). Antagonism was not observed. Addition of delafloxacin increased the activity of cefotaxime in all isolates. Delafloxacin susceptibility was restored in 5/7 (71.4%) strains. CONCLUSIONS: CNSSP showed a susceptibility to delafloxacin of 76.7%. Synergistic interactions between delafloxacin and cefotaxime were observed in vitro among CNSSP by GDS cross method.


Assuntos
Cefotaxima , Fluoroquinolonas , Infecções Pneumocócicas , Humanos , Cefotaxima/farmacologia , Streptococcus pneumoniae , Antibacterianos/farmacologia , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Sorotipagem
15.
Sci Rep ; 14(1): 3125, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326515

RESUMO

The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.


Assuntos
Acinetobacter baumannii , Ciprofloxacina , Ciprofloxacina/farmacologia , Fluoroquinolonas , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes , Farmacorresistência Bacteriana/genética , DNA Girase/genética
16.
J Glob Antimicrob Resist ; 36: 76-82, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160708

RESUMO

OBJECTIVES: The management of Helicobacter pylori in Vietnam is becoming progressively more difficult due to increasing antibiotic resistance, particularly to clarithromycin (CLR) and levofloxaxin (LVX). In Vietnam, the selection of an H. pylori eradication regimen is predominantly based on empirical evidence. However, molecular analysis aimed at identifying H. pylori antibiotic-resistant genotypes is a promising method in antibiotic susceptibility testing. In this study, we aimed to determine the rates of genotypic H. pylori resistance to CLR and LVX by using DNA strip technology in Vietnam. METHODS: We performed DNA-strip technology-based testing on 112 patients with H. pylori-positive gastroduodenal diseases to detect 23S rRNA and gyrA mutations. RESULTS: Helicobacter pylori genotypic resistance to CLR and LVX was evident in 81.3% and 53.6% of the patients, respectively, and dual resistance was observed in 48.2%. The 23S rRNA A2142G and A2143G mutations accounted for 1.8% and 79.5% of cases, respectively. The gyrA N87K, D91N, D91G, and D91Y mutations were present in 37.5%, 11.6%, 5.4%, and 5.4% of patients, respectively. All four gyrA mutations were observed in both the naïve and failure patients. We further found an association between the 23S rRNA A2143G mutation and a history of CLR use as well as between the gyrA N87K mutation and a history of LVX use. CONCLUSIONS: We found a very high prevalence of H. pylori resistance to CLR and LVX and dual resistance to these antibiotics in Vietnam. The application of molecular assays is feasible and may improve the management of H. pylori infection in Vietnam.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Levofloxacino/farmacologia , Helicobacter pylori/genética , Vietnã , RNA Ribossômico 23S/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Infecções por Helicobacter/epidemiologia , DNA , Biópsia
17.
Front Cell Infect Microbiol ; 14: 1322119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638825

RESUMO

Background: Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods: Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1ß and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results: Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1ß and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion: Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.


Assuntos
Cistite , Infecções por Escherichia coli , Doenças do Sistema Imunitário , Infecções Urinárias , Escherichia coli Uropatogênica , Feminino , Camundongos , Animais , Bexiga Urinária/microbiologia , NF-kappa B , Levofloxacino/farmacologia , Galectina 3 , Interleucina-6 , Receptor 4 Toll-Like , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia
18.
Jpn J Ophthalmol ; 68(2): 134-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311688

RESUMO

PURPOSE: The ocular surface in patients with atopic dermatitis (AD) is known to harbor an abundance of gram-positive cocci, particularly Staphylococcus aureus (S. aureus). This study reviewed the results of microbial cultures from the conjunctiva in AD patients, with special attention to the levofloxacin susceptibility of Staphylococci. STUDY DESIGN: Retrospective, single-center study. METHODS: This study involved 131 eyes of 112 Japanese patients with AD (87 men and 25 women, mean age: 40.4 ± 12.2 years) who underwent ocular surgery at Kyorin University Hospital. Bacterial isolates were collected from the conjunctival sacs in the preoperative period. Drug resistance to methicillin and levofloxacin was judged using the minimal inhibitory concentrations of oxacillin and levofloxacin determined by the broth dilution method. RESULTS: One hundred and fifty-seven strains were identified in 103 of the 131 eyes examined. S. aureus was isolated from 74 eyes (56.5%), followed by Staphylococcus epidermidis (S. epidermidis). In S. aureus, 11 strains (14.9%) were methicillin-resistant, and 18 (24.3%) were levofloxacin-resistant. In S. epidermidis, 15 strains (26.8%) were methicillin-resistant, and 17 (30.4%) were levofloxacin-resistant. No significant differences were observed in levofloxacin susceptibility with age, sex, previous ocular surgery, or duration of previous surgery. However, logistic multivariate analysis revealed that levofloxacin-resistant Staphylococci were concurrently resistant to methicillin, suggesting multidrug resistance. CONCLUSION: Distinctive bacterial distribution and drug resistance need consideration in the managing of ocular disorders among patients with AD.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Staphylococcus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meticilina/farmacologia , Staphylococcus aureus , Estudos Retrospectivos , Túnica Conjuntiva/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
19.
J Infect Public Health ; 17(5): 906-917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569270

RESUMO

BACKGROUND: With the global increase in antibacterial resistance, the challenge faced by developing countries is to utilize the available antibiotics, alone or in combination, against resistant bacterial strains. We aimed to encapsulate the levofloxacin (LVX) into polymeric nanoparticles using biodegradable polymers i.e. Chitosan and PLGA, estimating their physicochemical characteristics followed by functional assessment as nanocarriers of levofloxacin against the different resistant strains of bacteria isolated from biological samples collected from tertiary care hospital in Lahore, Pakistan. METHODS: LVX-NPs were synthesized using ion gelation and double emulsion solvent-evaporation method employing chitosan (CS) and poly-lactic-co-glycolic acid (PLGA), characterized via FTIR, XRD, SEM, and invitro drug release studies, while antibacterial activity was assessed using Kirby-Bauer disc-diffusion method. RESULTS: Data revealed that the levofloxacin-loaded chitosan nanoparticles showed entrapment efficiency of 57.14% ± 0.03 (CS-I), 77.30% ± 0.08(CS-II) and 87.47% ± 0.08 (CS-III). The drug content, particle size, and polydispersity index of CS-I were 52.22% ± 0.2, 559 nm ± 31 nm, and 0.030, respectively, whereas it was 66.86% ± 0.17, 595 nm ± 52.3 nm and 0.057, respectively for CS-II and 82.65% ± 0.36, 758 nm ± 24 nm and 0.1, respectively for CS-III. The PLGA-levofloxacin nanoparticles showed an entrapment efficiency of 42.80% ± 0.4 (PLGA I) and 23.80% ± 0.4 (PLGA II). The drug content, particle size and polydispersity index of PLGA-I were 86% ± 0.21, 92 nm ± 10 nm, and 0.058, respectively, whereas it was 52.41% ± 0.45, 313 nm ± 32 nm and 0.076, respectively for PLGA-II. The XRD patterns of both polymeric nanoparticles showed an amorphous nature. SEM analysis reflects the circular-shaped agglomerated nanoparticles with PLGA polymer and dense spherical nanoparticles with chitosan polymer. The in-vitro release profile of PLGA-I nanoparticles showed a sustained release of 82% in 120 h and it was 58.40% for CS-III. Both types of polymeric nanoparticles were found to be stable for up to 6 months without losing any major drug content. Among the selected formulations, CS-III and PLGA-I, CS-III had better antibacterial potency against gram+ve and gram-ve bacteria, except for K. pneumonia, yet, PLGA-I demonstrated efficacy against K. pneumonia as per CSLI guidelines. All formulations did not exhibit any signs of hemotoxicity, nonetheless, the CS-NPs tend to bind on the surface of RBCs. CONCLUSION: These data suggested that available antibiotics can effectively be utilized as nano-antibiotics against resistant bacterial strains, causing severe infections, for improved antibiotic sensitivity without compromising patient safety.


Assuntos
Quitosana , Glicolatos , Nanopartículas , Pneumonia , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Levofloxacino/farmacologia , Quitosana/química , Glicóis , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ácido Láctico/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Nanopartículas/química
20.
Sci Rep ; 14(1): 8986, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637591

RESUMO

Potassium-competitive acid blockers (P-CABs) provide potent acid inhibition, yet studies on P-CAB-based quadruple therapy for H. pylori eradication are limited. We theorized that integrating bismuth subsalicylate into a quadruple therapy regimen could enhance eradication rates. However, data on the efficacy of vonoprazan bismuth quadruple therapy are notably scarce. Therefore, the aim of this study was to evaluate the efficacy of vonoprazan-based bismuth quadruple therapy in areas with high clarithromycin and levofloxacin resistance. This was a prospective, single-center, randomized trial conducted to compare the efficacy of 7-day and 14-day vonoprazan-based bismuth quadruple therapy for H. pylori eradication between June 1, 2021, and March 31, 2022. Qualified patients were randomly assigned to the 7-day or 14-day regimen (1:1 ratio by computer-generated randomized list as follows: 51 patients for the 7-day regimen and 50 patients for the 14-day regimen). The regimens consisted of vonoprazan (20 mg) twice daily, bismuth subsalicylate (1024 mg) twice daily, metronidazole (400 mg) three times daily, and tetracycline (500 mg) four times daily. CYP3A4/5 genotyping and antibiotic susceptibility tests were also performed. Successful eradication was defined as 13negative C-UBTs 4 weeks after treatment. The primary endpoint was to compare the efficacy of 7-day and 14-day regimens as first-line treatments, which were assessed by intention-to-treat (ITT) and per-protocol (PP) analyses. The secondary endpoints included adverse effects. A total of 337 dyspeptic patients who underwent gastroscopy were included; 105 patients (31.1%) were diagnosed with H. pylori infection, and 101 patients were randomly assigned to each regimen. No dropouts were detected. The antibiotic resistance rate was 33.3% for clarithromycin, 29.4% for metronidazole, and 27.7% for levofloxacin. The CYP3A4 genotype was associated with 100% rapid metabolism. The H. pylori eradication rates for the 7-day and 14-day regimens were 84.4%, 95% CI 74.3-94.2 and 94%, 95% CI 87.4-100, respectively (RR difference 0.25, 95% CI 0.03-0.53, p value = 0.11). Interestingly, the 14-day regimen led to 100% eradication in the clarithromycin-resistant group. Among the patients in the 7-day regimen group, only two exhibited resistance to clarithromycin; unfortunately, neither of them achieved a cure from H. pylori infection. The incidence of adverse events was similar in both treatment groups, occurring in 29.4% (15/51) and 28% (14/50) of patients in the 7-day and 14-day regimens, respectively. No serious adverse reactions were reported. In conclusion, 14 days of vonoprazan-based bismuth quadruple therapy is highly effective for H. pylori eradication in areas with high levels of dual clarithromycin and levofloxacin resistance.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Compostos Organometálicos , Pirróis , Salicilatos , Sulfonamidas , Humanos , Antibacterianos/uso terapêutico , Bismuto/uso terapêutico , Claritromicina/farmacologia , Citocromo P-450 CYP3A , Quimioterapia Combinada , Infecções por Helicobacter/genética , Levofloxacino/farmacologia , Metronidazol/uso terapêutico , Compostos Organometálicos/uso terapêutico , Estudos Prospectivos , Pirróis/uso terapêutico , Salicilatos/uso terapêutico , Sulfonamidas/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA