Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.984
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315853

RESUMO

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Assuntos
Lipossomos , Nanopartículas , Pneumonia Viral , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipídeos/farmacologia , Macrófagos/metabolismo , RNA Interferente Pequeno/metabolismo , Citocinas/metabolismo , Pneumonia Viral/metabolismo
2.
J Biol Chem ; 300(3): 105661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246352

RESUMO

Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has emerged as a prevalent cause of liver cirrhosis and hepatocellular carcinoma, posing severe public health challenges worldwide. The incidence of NASH is highly correlated with an increased prevalence of obesity, insulin resistance, diabetes, and other metabolic diseases. Currently, no approved drugs specifically targeted for the therapies of NASH partially due to the unclear pathophysiological mechanisms. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor involved in the development of metabolic diseases such as obesity and diabetes. However, the function of GPER1 in NAFLD/NASH progression remains unknown. Here, we show that GPER1 exerts a beneficial role in insulin resistance, hepatic lipid accumulation, oxidative stress, or inflammation in vivo and in vitro. In particular, we observed that the lipid accumulation, inflammatory response, fibrosis, or insulin resistance in mouse NAFLD/NASH models were exacerbated by hepatocyte-specific GPER1 knockout but obviously mitigated by hepatic GPER1 activation in female and male mice. Mechanistically, hepatic GPER1 activates AMP-activated protein kinase signaling by inducing cyclic AMP release, thereby exerting its protective effect. These data suggest that GPER1 may be a promising therapeutic target for NASH.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Estrogênios/deficiência , Estrogênios/metabolismo , Dieta Hiperlipídica
3.
Biochem Biophys Res Commun ; 710: 149882, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583231

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease associated with type 2 diabetes mellitus (T2D). NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and even cancer, all of which have a very poor prognosis. Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist, has been recognized as a specific drug for the treatment of diabetes. In this study, we used a gene mutation mouse model (db/db mice) to investigate the potential liver-improving effects of semaglutide. The results showed that semaglutide improved lipid levels and glucose metabolism in db/db mice. HE staining and oil red staining showed alleviation of liver damage and reduction of hepatic lipid deposition after injection of semaglutide. In addition, semaglutide also improved the integrity of gut barrier and altered gut microbiota, especially Alloprevotella, Alistpes, Ligilactobacillus and Lactobacillus. In summary, our findings validate that semaglutide induces modifications in the composition of the gut microbiota and ameliorates NAFLD, positioning it as a promising therapeutic candidate for addressing hepatic steatosis and associated inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Peptídeos Semelhantes ao Glucagon , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
4.
FASEB J ; 37(9): e23132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37552471

RESUMO

The liver is an essential multifunctional organ, which constantly communicates with nearly all tissues. It has raised the concern that microgravity exposure can lead to liver dysfunction and metabolic syndromes. However, molecular mechanisms and intervention measures of the adverse effects of microgravity on hepatocytes are limited. In this study, we utilized the random positioning machine culture system to investigate the adverse effects on hepatocytes under simulated microgravity (SMG). Our results showed that SMG impaired hepatocyte viability, causing cell cycle arrest and apoptosis. Compared to normal gravity, it also triggered lipid accumulation, elevated triglyceride (TG) and ROS levels, and impaired mitochondria function in hepatocytes. Furthermore, RNA sequencing results showed that SMG upregulated genes implicated in lipid metabolisms, including PPARγ, PLIN2, CD36, FABPs, etc. Importantly, all these defects can be suppressed by melatonin, a potent antioxidant secreted by the pineal gland, suggesting its potential use of therapeutic intervention.


Assuntos
Melatonina , Ausência de Peso , Melatonina/farmacologia , Metabolismo dos Lipídeos , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Lipídeos/farmacologia
5.
FASEB J ; 37(3): e22794, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753399

RESUMO

Diabetic kidney disease (DKD) is one of the most serious complications of diabetes mellitus (DM) and the main cause of end-stage renal failure. However, the pathogenesis of DKD is complicated. In this study, we found that miR-124-3p plays a key role in regulating renal mitochondrial function and explored its possible mechanism in DKD progression by performing a series of in vitro and in vivo experiments. Decreased expression of miR-124-3p was found in db/db mice compared to db/m mice. Moreover, miR-124-3p down-regulated FOXQ1 by targeting FOXQ1 mRNA 3'-UTR in NRK-52E cells. Also, an increase in FOXQ1 and down-regulation of Sirt4 were found in db/db mouse kidney and renal tubular epithelial cells cultured with high glucose and high lipid. Overexpression of FOXQ1 could further down-regulate the expression of Sirt4 and aggravate the damage of mitochondria. Conversely, the knockdown of the FOXQ1 gene induced Sirt4 expression and partially restored mitochondrial function. To verify the effects of miR-124-3p on Sirt4 and mitochondria, we found that miR-124-3p mimics could up-regulate Sirt4 and inhibit ROS production and MitoSOX, thus restoring the number and morphology of mitochondria. These results showed that under high-glucose and high-lipid conditions, the down-regulation of miR-124-3p induces FOXQ1 in renal tubular epithelial cells, which in turn suppresses Sirt4 and leads to mitochondrial dysfunction, promoting the development of DKD.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Nefropatias Diabéticas/metabolismo , Camundongos Endogâmicos , Glucose/metabolismo , Mitocôndrias/metabolismo , Lipídeos/farmacologia
6.
Br J Nutr ; 131(8): 1342-1351, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149470

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/genética , Café , Cafeína , Nicotina/metabolismo , Nicotina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fumantes , Fígado/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Aumento de Peso , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
7.
Bioorg Med Chem ; 100: 117635, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340641

RESUMO

Although many types of cationic lipids have been developed as efficient gene vectors, the construction of lipid molecules with simple procedures remains challenging. Passerini reaction, as a classic multicomponent reaction, could directly give the α-acyloxycarboxamide products with biodegradable ester and amide bonds. Herein, two series of novel cationic lipids with heterocyclic pyrrolidine and piperidine as headgroups were synthesized through Passerini reaction (P-series) and amide condensation (A-series), and relevant structure-activity relationships on their gene delivery capability was studied. It was found that although both of the two series of lipids could form lipid nanoparticles (LNPs) which could effectively condense DNA, the LNP derived from P-series lipids showed higher transfection efficiency, serum tolerance, cellular uptake, and lower cytotoxicity. Unlike the A-series LNPs, the P-series LNPs showed quite different structure-activity relationship, in which the relative site of the secondary amine had significant effect on the transfection performance. The othro-isomers of the P-series lipids had lower cytotoxicity, but poor transfection efficiency, which was probably due to their unstable nature. Taken together, this study not only validated the feasibility of Passerini reaction for the construction of cationic lipids for gene delivery, but also afforded some clues for the rational design of effective non-viral lipidic gene vectors.


Assuntos
Técnicas de Transferência de Genes , Lipídeos , Humanos , Lipídeos/farmacologia , Lipídeos/química , Relação Estrutura-Atividade , Transfecção , Cátions/química , Amidas
8.
Dermatology ; 240(2): 233-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37939682

RESUMO

BACKGROUND: Detergent is a chemical product commonly used in people's daily life. Contact with detergent solutions can damage the human skin barrier and cause skin diseases. Skin surface lipids (SSLs) play a decisive role in skin barrier function. This study aimed to observe the changes of SSLs in young adults after exposure to detergent solutions to explore the underlying mechanism of skin barrier function damage. METHODS: A self-controlled study on youth adults was conducted in Zhengzhou, China, in November 2020. The study lasted for a total of 1 week, and skin barrier function was assessed by trans-epidermal water loss (TEWL) values. The changes of SSLs before and after exposure to the detergent with subjects were measured using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. RESULTS: The skin barrier function of subjects' hands was impaired after exposure to detergent (TEWL value increased, p < 0.001). A total of 520 SSLs were detected, divided into 6 main categories. The average relative abundance of these 6 major lipids decreased after exposure. Sphingolipids (mainly ceramides), free fatty acids (mainly long-chain fatty acids), cholesterol lipids, and glycerophospholipids are the most severely damaged lipids. CONCLUSION: Detergent solutions can damage the skin barrier function and SSLs of young hands; interventions targeting SSLs to eliminate detergent damage to human skin may be of value.


Assuntos
Detergentes , Lipidômica , Humanos , Adulto Jovem , Adolescente , Detergentes/efeitos adversos , Detergentes/análise , Pele , Epiderme/química , Água , Lipídeos/análise , Lipídeos/química , Lipídeos/farmacologia
9.
Bioelectromagnetics ; 45(2): 58-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013630

RESUMO

Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, ßsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the ßsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the ßsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the ßsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.


Assuntos
Glicoforinas , Espectrina , Humanos , Espectrina/química , Espectrina/metabolismo , Espectrina/farmacologia , Glicoforinas/metabolismo , Glicoforinas/farmacologia , Ligação de Hidrogênio , Espectroscopia Dielétrica , Membrana Eritrocítica/metabolismo , Eritrócitos , Esqueleto/metabolismo , Lipídeos/farmacologia , Concentração de Íons de Hidrogênio
10.
Mar Drugs ; 22(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393062

RESUMO

The present study aims to explore the probable anti-adipogenesis effect of Dictyopteris divaricata (D. divaricata) in 3T3-L1 preadipocytes by regulating heme oxygenase-1 (HO-1). The extract of D. divaricata retarded lipid accretion and decreased triglyceride (TG) content in 3T3-L1 adipocytes but increased free glycerol levels. Treatment with the extract inhibited lipogenesis by inhibiting protein expressions of fatty acid synthase (FAS) and lipoprotein lipase (LPL), whereas lipolysis increased by activating phosphorylation of hormone-sensitive lipase (p-HSL) and AMP-activated protein kinase (p-AMPK). The extract inhibited adipocyte differentiation of 3T3-L1 preadipocytes through down-regulating adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). This is attributed to the triggering of Wnt/ß-catenin signaling. In addition, this study found that treatment with the extract activated HO-1 expression. Pharmacological approaches revealed that treatment with Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, resulted in an increase in lipid accumulation and a decrease in free glycerol levels. Finally, three adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP1, restored their expression in the presence of ZnPP. Analysis of chemical constituents revealed that the extract of D. divaricata is rich in 1,4-benzenediol, 7-tetradecenal, fucosterol, and n-hexadecanoic acid, which are known to have multiple pharmacological properties.


Assuntos
Adipogenia , Phaeophyceae , Animais , Camundongos , Lipólise , Células 3T3-L1 , Heme Oxigenase-1/metabolismo , PPAR gama/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Diferenciação Celular , Adipócitos , Proteína alfa Estimuladora de Ligação a CCAAT , Fatores de Transcrição/metabolismo , Lipídeos/farmacologia
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649229

RESUMO

Loss-of-function mutations in Angiopoietin-like 3 (Angptl3) are associated with lowered blood lipid levels, making Angptl3 an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of Angptl3 in vivo. This system mediated specific and efficient Angptl3 gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.


Assuntos
Proteínas Semelhantes a Angiopoietina , Proteína 9 Associada à CRISPR/genética , Portadores de Fármacos , Edição de Genes , Lipídeos , Fígado/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos , RNA Mensageiro , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacocinética , RNA Guia de Cinetoplastídeos/farmacologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , RNA Mensageiro/farmacologia
12.
Biodegradation ; 35(1): 71-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37052742

RESUMO

This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of Scenedesmus vacuolatus. The impact of the UV radiation on S. vacuolatus morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed S. vacuolatus on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in S. vacuolatus exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of S. vacuolatus to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed S. vacuolatus showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h-1) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed S. vacuolatus. These findings provided major insights into the use of UV radiation to enhance S. vacuolatus biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.


Assuntos
Scenedesmus , Raios Ultravioleta , Scenedesmus/metabolismo , Clorofila/metabolismo , Clorofila/farmacologia , Carotenoides/metabolismo , Carotenoides/farmacologia , Carboidratos/farmacologia , Lipídeos/farmacologia , Biodegradação Ambiental
13.
J Am Soc Nephrol ; 34(1): 73-87, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719147

RESUMO

BACKGROUND: Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS: To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS: DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS: Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.


Assuntos
Rim , Traumatismo por Reperfusão , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Lipídeos/farmacologia , Traumatismo por Reperfusão/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474216

RESUMO

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Camundongos , Animais , Adipogenia/genética , Obesidade/metabolismo , Hipertrofia , Lipídeos/farmacologia , Estresse Oxidativo , Células 3T3-L1 , PPAR gama/metabolismo
15.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474008

RESUMO

Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.


Assuntos
Compostos de Amônio , Humanos , Compostos de Amônio/farmacologia , Staphylococcus aureus , Compostos de Amônio Quaternário/química , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Bactérias , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
16.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542392

RESUMO

This study evaluated the positive effects of autumn olive berries (AOBs) extract on delaying aging by improving lipid metabolism in middle-aged Caenorhabditis elegans that had become obese due to a high-glucose (GLU) diet. The total phenolic content and DPPH radical scavenging abilities of freeze-dried AOBs (FAOBs) or spray-dried AOBs (SAOBs) were examined, and FAOBs exhibited better antioxidant activity. HPLC analysis confirmed that catechin is the main phenolic compound of AOBs; its content was 5.95 times higher in FAOBs than in SAOBs. Therefore, FAOBs were used in subsequent in vivo experiments. FAOBs inhibited lipid accumulation in both the young adult and middle-aged groups in a concentration-dependent manner under both normal and 2% GLU conditions. Additionally, FAOBs inhibited ROS accumulation in a concentration-dependent manner under normal and 2% GLU conditions in the middle-aged worms. In particular, FAOB also increased body bending and egg production in middle-aged worms. To confirm the intervention of genetic factors related to lipid metabolism from the effects of FAOB, body lipid accumulation was confirmed using worms deficient in the daf-16, atgl-1, aak-1, and akt-1 genes. Regarding the effect of FAOB on reducing lipid accumulation, the impact was nullified in daf-16-deficient worms under the 2% GLU condition, and nullified in both the daf-16- and atgl-1-deficient worms under fasting conditions. In conclusion, FAOB mediated daf-16 and atgl-1 to regulate lipogenesis and lipolysis in middle-aged worms. Our findings suggest that FAOB improves lipid metabolism in metabolically impaired middle-aged worms, contributing to its age-delaying effect.


Assuntos
Proteínas de Caenorhabditis elegans , Elaeagnaceae , Olea , Animais , Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Olea/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Frutas/metabolismo , Envelhecimento , Elaeagnaceae/metabolismo , Lipídeos/farmacologia , Longevidade
17.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474161

RESUMO

Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5'-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Saponinas , Animais , Camundongos , Obesidade/metabolismo , Esteroides/farmacologia , Fármacos Antiobesidade/farmacologia , Adipogenia , Proteínas Quinases Ativadas por AMP/metabolismo , Lipídeos/farmacologia , Células 3T3-L1 , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474229

RESUMO

The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 µg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.


Assuntos
Fármacos Antiobesidade , Síndrome Metabólica , Zingiber officinale , Camundongos , Animais , Vapor , Síndrome Metabólica/tratamento farmacológico , Projetos Piloto , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Dieta Hiperlipídica , Fármacos Antiobesidade/farmacologia , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL , Células 3T3-L1 , Adipogenia
19.
J Sci Food Agric ; 104(4): 2417-2428, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989713

RESUMO

BACKGROUND: Hyperlipidemia is characterized by abnormally elevated blood lipids. Quinoa saponins (QS) have multiple pharmacological activities, including antitumor, bactericidal and immune-enhancing effects. However, the lipid-lowering effect and mechanisms of QS in vivo have been scarcely reported. METHODS: The effect of QS against hyperlipidemia induced by high-fat diet in rats was explored based on gut microbiota and serum non-targeted metabolomics. RESULTS: The study demonstrated that the supplementation of QS could reduce serum lipids, body weight, liver injury and inflammation. 16S rRNA sequencing demonstrated that QS mildly increased alpha-diversity, altered the overall structure of intestinal flora, decreased the relative richness of Firmicutes, the ratio of Firmicutes/Bacteroidetes (P < 0.05) and increased the relative richness of Actinobacteria, Bacteroidetes, Bifidobacterium, Roseburia and Coprococcus (P < 0.05). Simultaneously, metabolomics analysis showed that QS altered serum functional metabolites with respect to bile acid biosynthesis, arachidonic acid metabolism and taurine and hypotaurine metabolism, which were closely related to bile acid metabolism and fatty acid ß-oxidation. Furthermore, QS increased protein levels of farnesoid X receptor, peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1, which were related to the screened metabolic pathways. Spearman correlation analysis showed that there was a correlation between gut microbiota and differential metabolites. CONCLUSION: QS could prevent lipid metabolism disorders in hyperlipidemic rats, which may be closely associated with the regulation of the gut microbiota and multiple metabolic pathways. This study may provide new evidence for QS as natural active substances for the prevention of hyperlipidemia. © 2023 Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Microbioma Gastrointestinal , Hiperlipidemias , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Chenopodium quinoa/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , RNA Ribossômico 16S , Lipídeos/farmacologia , Redes e Vias Metabólicas , Ácidos e Sais Biliares
20.
Fish Physiol Biochem ; 50(1): 127-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36826624

RESUMO

Little information is available on how exogenous bile acids alter lipid metabolism in muscle of fish. In the present study, an 8-week feeding trial were used to investigate the impacts of bile acids on lipid deposition, lipid metabolism, lipidomics, and transcriptomics in muscle of pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed a high-fat diet (HD). The HD treatment significantly increased the crude lipid content, while bile acids diet (BD) treatment decreased it (p = 0.057). BD treatment significantly decreased triglycerides level and significantly increased phosphatidylcholines, phosphatidylethanolamines, and phosphatidylglycerol levels. The contents of TG (17:0/18:2/18:2), TG (17:1/18:2/22:6), PC (6:0/22:1), PC (9:0/26:1), PC (26:1/6:0), PC (17:2/18:2), PE (16:0/18:1), PE (18:0/17:1), PG (18:0/20:5), PG (18:3/20:5), PG (19:0/16:1), and PG (18:0/18:1) in muscle were well response to dietary lipid level and bile acids supplementation. HD and BD groups induced a variety of adaptive metabolic responses in transcriptomics. HD treatment increased the lipogenesis and decreased lipolysis, whereas BD treatment decreased the lipogenesis and increased lipolysis. Present study revealed the improvement of muscular lipid metabolism and lipid composition in response to bile acids administration in pearl gentian grouper.


Assuntos
Bass , Metabolismo dos Lipídeos , Animais , Dieta Hiperlipídica , Bass/fisiologia , Suplementos Nutricionais , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Lipidômica , Perfilação da Expressão Gênica , Lipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA