RESUMO
BACKGROUND: Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS: M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS: Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.
Assuntos
Basidiomycota/genética , Variação Genética , Glicolipídeos/genética , Lipase/genética , Família Multigênica , Petróleo/microbiologia , Glicolipídeos/metabolismo , Lipase/classificação , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Trinidad e TobagoRESUMO
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Resistência à Doença , Metabolismo dos Lipídeos/fisiologia , Oryza/enzimologia , Imunidade Vegetal/fisiologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Sequência Conservada , Resistência à Doença/imunologia , Regulação para Baixo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Lipase/química , Lipase/classificação , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/imunologia , Lipídeos/isolamento & purificação , Microscopia Confocal , Oryza/genética , Oryza/imunologia , Oryza/ultraestrutura , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Caules de Planta/química , Caules de Planta/enzimologia , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/ß hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.
Assuntos
Evolução Molecular , Genes de Plantas , Lipase/genética , Família Multigênica , Variação Genética , Genoma de Planta , Genômica , Lipase/classificação , Filogenia , Plantas/genéticaRESUMO
BACKGROUND: Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. RESULTS: In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. CONCLUSIONS: The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
Assuntos
Bacillus/enzimologia , Bacillus/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Fontes Termais/microbiologia , Lipase/química , Lipase/isolamento & purificação , Análise de Sequência , Sequência de Aminoácidos , Armênia , Bacillus/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Estabilidade Enzimática , Esterases , Temperatura Alta , Concentração de Íons de Hidrogênio , Lipase/classificação , Lipase/genética , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/ß-hydrolase_1, α/ß-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/ß-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.
Assuntos
Lipase/genética , Metabolismo dos Lipídeos , Mucor/enzimologia , Motivos de Aminoácidos , Biologia Computacional , Sequência Consenso , Perfilação da Expressão Gênica , Lipase/química , Lipase/classificação , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Mucor/crescimento & desenvolvimento , Mucor/metabolismo , Filogenia , Sinais Direcionadores de ProteínasRESUMO
Dandruff, a skin disorder affecting 50% of the world population, is linked with proliferation of lipophilic yeasts of the genus Malassezia (particularly Malassezia globosa and M. restricta). Most Malassezia species show a unique lipid dependency and require external lipids for growth. Genome mining of the incomplete M. restricta genome led to the identification of eight lipase sequences. Sequences representing the class 3 and LIP lipase families were used to clone the lipases MrLip1, MrLip2 and MrLip3, recombinantly expressed in Pichia pastoris, and tested for their activity using mono-, di- and triacylglycerol substrates. Hydrolysis by the M. restricta lipase MrLip1 and MrLip2 (family class 3) was limited to the mono- and diacylglycerol, while MrLip3 (family LIP) hydrolyzed all three substrates. This result confirms that Malassezia family LIP lipases are responsible for the hydrolysis of triacylglycerols, the main component of human sebum. Furthermore, the information regarding lipases from M. restricta presented here might aid in the search for anti-dandruff agents.
Assuntos
Caspa/microbiologia , Lipase/genética , Lipase/metabolismo , Malassezia/enzimologia , Malassezia/genética , Clonagem Molecular , Humanos , Lipase/classificação , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
The ESTHER database, which is freely available via a web server (http://bioweb.ensam.inra.fr/esther) and is widely used, is dedicated to proteins with an α/ß-hydrolase fold, and it currently contains >30 000 manually curated proteins. Herein, we report those substantial changes towards improvement that we have made to improve ESTHER during the past 8 years since our 2004 update. In particular, we generated 87 new families and increased the coverage of the UniProt Knowledgebase (UniProtKB). We also renewed the ESTHER website and added new visualization tools, such as the Overall Table and the Family Tree. We also address two topics of particular interest to the ESTHER users. First, we explain how the different enzyme classifications (bacterial lipases, peptidases, carboxylesterases) used by different communities of users are combined in ESTHER. Second, we discuss how variations of core architecture or in predicted active site residues result in a more precise clustering of families, and whether this strategy provides trustable hints to identify enzyme-like proteins with no catalytic activity.
Assuntos
Bases de Dados de Proteínas , Hidrolases/química , Hidrolases/classificação , Bactérias/enzimologia , Domínio Catalítico , Esterases/química , Esterases/classificação , Internet , Lipase/química , Lipase/classificação , Dobramento de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/classificação , Software , Tioléster Hidrolases/química , Tioléster Hidrolases/classificaçãoRESUMO
BACKGROUND: Lipolytic enzymes are commonly used to produce desired flavors in lipolyzed milkfat (LMF) manufacturing processes. However, the choice of enzyme is critical because it determines the final profile of fatty acids released and the consequent flavor of the product. We previously constructed a metagenomic library from marine sediments, to explore the novel enzymes which have unique properties useful in flavor-enhancing LMF. RESULTS: A novel lipase Est_p6 was isolated from a metagenomic library and was expressed highly in E.coli. Bioinformatic analysis indicated that Est_p6 belongs to lipolytic enzyme family IV, the molecular weight of purified Est_p6 was estimated at 36 kDa by SDS-PAGE. The hydrolytic activity of the enzyme was stable under alkaline condition and the optimal temperature was 50°C. It had a high specific activity (2500 U/mg) toward pNP butyrate (pNP-C4), with K(m) and V(max) values of 1.148 mM and 3497 µmolâmin⻹âmg⻹, respectively. The enzyme activity was enhanced by DTT and was not significantly inhibited by PMSF, EDTA or SDS. This enzyme also showed high hydrolysis specificity for myristate (C14) and palmitate (C16). It seems that Est_p6 has safety for commercial LMF flavor production and food manufacturing processes. CONCLUSIONS: The ocean is a vast and largely unexplored resource for enzymes. According the outstanding alkaline-stability of Est_p6 and it produced myristic acid and palmitic acid more efficiently than other free fatty acids in lipolyzed milkfat. This novel lipase may be used to impart a distinctive and desirable flavor and odor in milkfat flavor production.
Assuntos
Aromatizantes/metabolismo , Lipase/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Escherichia coli/metabolismo , Aromatizantes/química , Aromatizantes/isolamento & purificação , Biblioteca Gênica , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Cinética , Lipase/classificação , Lipase/genética , Metagenômica , Dados de Sequência Molecular , Ácido Mirístico/metabolismo , Ácido Palmítico/metabolismo , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato , TemperaturaRESUMO
The hallmark of obesity and one of the key contributing factors to insulin resistance, type 2 diabetes and cardiovascular disease is excess triacylglycerol (TG) storage. In hepatocytes, excessive accumulation of TG is the common denominator of a wide range of clinicopathological entities known as nonalcoholic fatty liver disease, which can eventually progress to cirrhosis and associated complications including hepatic failure, hepatocellular carcinoma and death. A tight regulation between TG synthesis, hydrolysis, secretion and fatty acid oxidation is required to prevent lipid accumulation as well as lipid depletion from hepatocytes. Therefore, understanding the pathways that regulate hepatic TG metabolism is crucial for development of therapies to ameliorate pathophysiological conditions associated with excessive hepatic TG accumulation, including dyslipidemias, viral infection and atherosclerosis. This review highlights the physiological roles of liver lipases that degrade TG in cytosolic lipid droplets, endoplasmic reticulum, late endosomes/lysosomes and along the secretory route. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Assuntos
Hepatócitos/enzimologia , Lipase , Fígado/enzimologia , Triglicerídeos , Animais , Autofagia , Diabetes Mellitus Tipo 2/enzimologia , Esterases/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/etiologia , Humanos , Lipase/classificação , Lipase/metabolismo , Cirrose Hepática/enzimologia , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos/biossíntese , Triglicerídeos/metabolismoRESUMO
A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser192-Glu313-His412 with Ser92 in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K(m) and k(cat) of 0.33 mM and 36.21 s⻹, respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 °C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.
Assuntos
Esterases/genética , Esterases/metabolismo , Metagenômica , Sequência de Aminoácidos , Biotecnologia , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/classificação , Esterases/isolamento & purificação , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Cinética , Lipase/classificação , Lipase/genética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Nitrofenóis/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Esgotos/química , Especificidade por Substrato , TemperaturaRESUMO
in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/ß hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.
Assuntos
Esterases/isolamento & purificação , Lipase/isolamento & purificação , Metagenômica , Sequência de Aminoácidos , Bacillaceae/enzimologia , Proteínas de Bactérias/química , Butiratos/metabolismo , Sequência Conservada , DNA/genética , DNA/isolamento & purificação , Esterases/classificação , Alemanha , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/classificação , Lipólise , Dados de Sequência Molecular , Concentração Osmolar , Filogenia , Proteínas Recombinantes/metabolismo , Sais/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Microbiologia do Solo , Solventes/farmacologia , Especificidade por Substrato , Temperatura , Árvores , Triglicerídeos/metabolismoRESUMO
BACKGROUND: GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. RESULTS: In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. CONCLUSIONS: Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study.
Assuntos
Esterases/genética , Genoma de Planta , Lipase/genética , Oryza/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Biologia Computacional , Esterases/química , Esterases/classificação , Regulação da Expressão Gênica de Plantas , Genômica , Lipase/química , Lipase/classificação , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Estrutura Terciária de ProteínaRESUMO
BACKGROUND: Lipases (EC 3.1.1.3) catalyze the hydrolysis of triacyl glycerol to glycerol and are involved in the synthesis of both short chain and long chain acylglycerols. They are widely used industrially in various applications, such as baking, laundry detergents and as biocatalysts in alternative energy strategies. Marine ecosystems are known to represent a large reservoir of biodiversity with respect to industrially useful enzymes. However the vast majority of microorganisms within these ecosystems are not readily culturable. Functional metagenomic based approaches provide a solution to this problem by facilitating the identification of novel enzymes such as the halo-tolerant lipase identified in this study from a marine sponge metagenome. RESULTS: A metagenomic library was constructed from the marine sponge Haliclona simulans in the pCC1fos vector, containing approximately 48,000 fosmid clones. High throughput plate screening on 1% tributyrin agar resulted in the identification of 58 positive lipase clones. Following sequence analysis of the 10 most highly active fosmid clones the pCC1fos53E1 clone was found to contain a putative lipase gene lpc53E1, encoded by 387 amino acids and with a predicted molecular mass of 41.87 kDa. Sequence analysis of the predicted amino acid sequence of Lpc53E1 revealed that it is a member of the group VIII family of lipases possessing the SXTK motif, related to type C ß-lactamases. Heterologous expression of lpc53E1 in E. coli and the subsequent biochemical characterization of the recombinant protein, showed an enzyme with the highest substrate specificity for long chain fatty acyl esters. Optimal activity was observed with p- nitrophenyl palmitate (C16) at 40°C, in the presence of 5 M NaCl at pH 7; while in addition the recombinant enzyme displayed activity across broad pH (3-12) and temperature (4 -60°C) ranges and high levels of stability in the presence of various solvents at NaCl concentrations as high as 5 M and at temperatures ranging from 10 to 80°C. A maximum lipase activity of 2,700 U/mg was observed with 10 mM p-nitrophenyl palmitate as substrate, in the presence of 5 mM Ca2+ and 5 M NaCl, and a reaction time of 15 min at pH 7 and 40°C; while KM and Vmax values were calculated to be 1.093 mM-1 and 50 µmol/min, respectively. CONCLUSION: We have isolated a novel halo tolerant lipase following a functional screen of a marine sponge fosmid metagenomic library. The activity and stability profile of the recombinant enzyme over a wide range of salinity, pH and temperature; and in the presence of organic solvent and metal ions suggests a utility for this enzyme in a variety of industrial applications.
Assuntos
Haliclona/metabolismo , Lipase/química , Sequência de Aminoácidos , Animais , Cálcio/química , Clonagem Molecular , Haliclona/genética , Concentração de Íons de Hidrogênio , Íons/química , Lipase/classificação , Lipase/genética , Metagenoma , Metais/química , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Cloreto de Sódio/química , Especificidade por Substrato , TemperaturaRESUMO
The enzymatic synthesis of biodiesel by a high-pressure semi-continuous process in near-critical carbon dioxide (NcCO(2)) was studied. Biodiesel synthesis was evaluated in both batch and semi-continuous systems to develop an effective process. Batch processing demonstrated the advantageous properties of NcCO(2) as an alternative reaction medium. Three immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM from Novozymes) were tested, with Lipozyme TL IM the most effective, showing the highest conversion. Biodiesel conversion from several edible and non-edible oil feedstocks reached >92%. Higher conversion (99.0%) was obtained in a shorter time by employing repeated batch processes with optimized conditions: 44.3 g (500 mM) canola oil, a substrate molar ratio (methanol:oil) of 3:1, an enzyme loading of 20 wt% (of the oil used), at 30 °C, 100 bar, and 300 rpm agitation. The enzyme maintained 80.2% of its initial stability after being reused eight times. These results suggest that this method produces biodiesel energy-efficiently and environment-friendly.
Assuntos
Biocombustíveis/análise , Dióxido de Carbono/síntese química , Lipase/química , Óleos de Plantas/química , Lipase/classificação , PressãoRESUMO
Lipases are water-soluble enzymes that hydrolyze water-insoluble lipid molecules, such as triglycerides, phospholipids, and galactolipids. They are ubiquitous in nature and are present in humans, animals, insects, plants, fungi, and microorganisms. While we commonly consider pancreatic lipase, this review provides an overview of several lipases that are important for the digestion and metabolism of lipids in veterinary species. All of these enzymes have specific functions but share a common α/ß-hydrolase fold and a catalytic triad where substrate hydrolysis occurs. The pancreatic lipase gene family is one of the best characterized lipase gene families and consists of 7 mammalian subfamilies: pancreatic lipase, pancreatic lipase related proteins 1 and 2, hepatic lipase, lipoprotein lipase, endothelial lipase, and phosphatidylserine phospholipase A1. Other mammalian lipases that play integral roles in lipid digestion include carboxyl ester lipase and gastric lipase. Although most enzymes have preferred substrate specificity, much overlap occurs across the plethora of lipases because of the similarities in their structures. This has major implications for the development and clinical utilization of diagnostic assays. These implications are further explored in our companion Currents in One Health article by Lim et al in the August 2022 issue of the Journal of American Veterinary Medical Association, which focuses on pancreatic lipase assays for the diagnosis of pancreatitis.
Assuntos
Lipase , Animais , Humanos , Cinética , Lipase/química , Lipase/classificação , Pâncreas/enzimologia , Triglicerídeos/metabolismo , ÁguaRESUMO
BACKGROUND: Metagenomics, the application of molecular genomics to consortia of non-cultivated microbes, has the potential to have a substantial impact on the search for novel industrial enzymes such as esterases (carboxyl ester hydrolases, EC 3.1.1.1) and lipases (triacylglycerol lipases, EC 3.1.1.3). In the current work, a novel lipase gene was identified from a fosmid metagenomic library constructed with the "prokaryotic-enriched" DNA from a fat-contaminated soil collected from a wastewater treatment plant. RESULTS: In preliminary screening on agar containing 1% tributyrin, 2661 of the approximately 500,000 clones in the metagenomic library showed activity. Of these, 127 showed activity on agar containing 1% tricaprylin, while 32 were shown to be true lipase producers through screening on agar containing 1% triolein. The clone with the largest halo was further characterized. Its lipase gene showed 72% identity to a putative lipase of Yersinia enterocolitica subsp. palearctica Y11. The lipase, named LipC12, belongs to family I.1 of bacterial lipases, has a chaperone-independent folding, does not possess disulfide bridges and is calcium ion dependent. It is stable from pH 6 to 11 and has activity from pH 4.5 to 10, with higher activities at alkaline pH values. LipC12 is stable up to 3.7 M NaCl and from 20 to 50°C, with maximum activity at 30°C over a 1 h incubation. The pure enzyme has specific activities of 1722 U/mg and 1767 U/mg against olive oil and pig fat, respectively. Moreover, it is highly stable in organic solvents at 15% and 30% (v/v). CONCLUSIONS: The combination of the use of a fat-contaminated soil, enrichment of prokaryotic DNA and a three-step screening strategy led to a high number of lipase-producing clones in the metagenomic library. The most notable properties of the new lipase that was isolated and characterized were a high specific activity against long chain triacylglycerols, activity and stability over a wide range of pH values, good thermal stability and stability in water-miscible organic solvents and at high salt concentrations. These characteristics suggest that this lipase has potential to perform well in biocatalytic processes, such as for hydrolysis and synthesis reactions involving long-chain triacylglycerols and fatty acid esters.
Assuntos
Proteínas de Bactérias/química , Lipase/química , Metagenômica , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Lipase/classificação , Lipase/genética , Dados de Sequência Molecular , Filogenia , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato , Temperatura , Yersinia enterocolitica/enzimologiaRESUMO
This study reports on the analysis of the lipolytic proteome of cultured human fat cells. We used specific affinity tags to detect and identify the lipolytic and esterolytic enzymes in human subcutaneous (Sc) and visceral (Visc) adipocytes. For this purpose, differentiated fat cells were incubated with a fluorescent suicide inhibitor followed by protein separation using one- or two-dimensional gel electrophoresis. After detection by fluorescence laser scanning, the labeled proteins were tryptically digested and peptides were identified by mass spectrometry. In addition, a biotinylated probe was used for specific enzyme labeling with subsequent avidin affinity isolation of the tagged proteins. Finally, we determined the quantitative differences in protein expression levels between subcutaneous and visceral adipocytes using differential activity-based gel electrophoresis (DABGE). We found that the lipase/esterase patterns of both cell types are very similar, except for some proteins that were only found in Sc cells. Two novel enzyme candidates identified in this study were overexpressed and characterized using biologically relevant glycerolipid substrates in vitro. Both of them showed pronounced hydrolytic activities on hydrophobic acylglycerols and therefore may be considered lipases. The physiological functions of the novel lipolytic proteins in vivo are currently subject to investigation.
Assuntos
Adipócitos/enzimologia , Esterases/metabolismo , Lipase/metabolismo , Proteômica/métodos , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Células COS , Diferenciação Celular/genética , Células Cultivadas , Chlorocebus aethiops , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Esterases/classificação , Esterases/genética , Perfilação da Expressão Gênica , Humanos , Gordura Intra-Abdominal/citologia , Lipase/classificação , Lipase/genética , Lipólise , Masculino , Microscopia de Fluorescência , Proteoma/análise , Proteoma/metabolismo , Gordura Subcutânea/citologia , Adulto JovemRESUMO
BACKGROUND: The Lipase Engineering Database (LED) integrates information on sequence, structure and function of lipases, esterases and related proteins with the alpha/beta hydrolase fold. A new superfamily for Candida antarctica lipase A (CALA) was introduced including the recently published crystal structure of CALA. Since CALA has a highly divergent sequence in comparison to other alpha/beta hydrolases, the Lipase Engineering Database was used to classify CALA in the frame of the already established classification system. This involved the comparison of CALA to similar structures as well as sequence-based comparisons against the content of the LED. RESULTS: The new release 3.0 (December 2009) of the Lipase Engineering Database contains 24783 sequence entries for 18585 proteins as well as 656 experimentally determined protein structures, including the structure of CALA. In comparison to the previous release 1 with 4322 protein and 167 structure entries this update represents a significant increase in data volume. By comparing CALA to representative structures from all superfamilies, a structure from the deacetylase superfamily was found to be most similar to the structure of CALA. While the alpha/beta hydrolase fold is conserved in both proteins, the major difference is found in the cap region. Sequence alignments between both proteins show a sequence similarity of only 15%. A multisequence alignment of both protein families was used to create hidden Markov models for the cap region of CALA and showed that the cap region of CALA is unique among all other proteins of the alpha/beta hydrolase fold. By specifically comparing the substrate binding pocket of CALA to other binding pockets of alpha/beta hydrolases, the binding pocket of Candida rugosa lipase was identified as being highly similar. This similarity also applied to the lid of Candida rugosa lipase in comparison to the potential lid of CALA. CONCLUSION: The LED serves as a valuable tool for the systematic analysis of single proteins or protein families. The updated release 3.0 was used for the evaluation of alpha/beta hydrolases. The HTML version of the database with new features is available at http://www.led.uni-stuttgart.de and provides sequences, structures and a set of analysis tools including phylogenetic trees and HMM profiles.
Assuntos
Candida/enzimologia , Bases de Dados de Proteínas , Lipase/classificação , Sequência de Aminoácidos , Cadeias de Markov , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , SoftwareRESUMO
Two novel lipase genes RlipE1 and RlipE2 which encoded 361- and 265-amino acid peptides, respectively, were recovered from a metagenomic library of the rumen microbiota of Chinese Holstein cows. A BLAST search revealed a high similarity (90%) between RlipE2 and a carboxylesterase from Thermosinus carboxydivorans Nor1, while there was a low similarity (below 50%) between RlipE1 and other lipases. Phylogenetic analysis indicated that RlipE2 clustered with the lipolytic enzymes from family V while RlipE1 clustered with six other putative bacterial lipases which might constitute a new subfamily. The recombinant lipases were thermally unstable and retained 60% activity over a pH range of 6.5-8.5. Substrate specificity assay indicated that both enzymes had higher hydrolytic activity toward laurate (C(12)), palmitate (C(16)) and stearate (C(18)). The novel phylogenetic affiliation and high specificity of both enzymes for long-chain fatty acid make them interesting targets for manipulation of rumen lipid metabolism.
Assuntos
Lipase/metabolismo , Rúmen/microbiologia , Veillonellaceae/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Ácidos Graxos/metabolismo , Feminino , Biblioteca Gênica , Genômica , Lipase/classificação , Lipase/genética , Lipase/isolamento & purificação , Dados de Sequência Molecular , FilogeniaRESUMO
In the last half century there was a significant increase in the incidence of fungal infections being likely to become a global health priority. The sophisticated degree of host-Candida interaction is the product of different virulence strategies used by the fungus to invade the tissues and the various defense mechanisms that it develops to control it. There is a significant amount of literature that indicates that this opportunistic commensal fungus has components that can be considered virulence factors related to the stage of the infectious process. Among the virulence factors of this fungus can be mentioned the adherence to cell surfaces, the formation of biofilms and the production of hydrolytic enzymes. The most studied hydrolases secreted by C. albicans are aspartyl proteinases, phospholipases and esterases, while lipases have been the least studied. These enzymes would have the function to facilitate active penetration into the cells, participating in the digestion and synthesis of lipid esters for their nutrition and contributing to the invasion of the tissue by hydrolyzing the lipid components of the host cell membranes. There is also bibliographic evidence that these enzymes are capable to damage cells and molecules of the immune system to avoid the antimicrobial activity.Taking into account the foregoing, this review provides an updated description of biochemical and molecular characteristics of the lipases secreted by Candida, its role as a virulence factor and its potential for the development of new antifungal drugs.
En el último medio siglo se produjo un aumento significativo en la incidencia de infecciones fúngicas siendo probable que se conviertan en una prioridad de salud global. El sofisticado grado de interacción hospedador-Candida es producto de diferentes estrategias de virulencia que utiliza el hongo para invadir los tejidos y de los diversos mecanismos de defensa que este último desarrolla para controlarlo. Existe bibliografía que indica que este hongo comensal oportunista posee componentes que pueden ser considerados factores de virulencia asociados a la etapa del proceso infeccioso. Dentro de los factores de virulencia de este hongo pueden mencionarse la adherencia a las superficies celulares, la formación de biofilms y la producción de enzimas hidrolíticas. Las hidrolasas secretadas por C. albicans más estudiadas son las aspartil proteinasas, las fosfolipasas y las esterasas, mientras que las lipasas han sido las menos exploradas. Estas enzimas tendrían como función facilitar la penetración activa en las células, participar en la digestión y síntesis de ésteres de lípidos para su nutrición y contribuir a la invasión del tejido al hidrolizar los componentes lipídicos de las membranas celulares del hospedador. También hay evidencia bibliográfica que indica que estas enzimas son capaces de dañar células y moléculas del sistema inmune para evitar la actividad antimicrobiana. Teniendo en cuenta lo precedente, esta revisión, proporciona una actualizada descripción de las características bioquímicas y moleculares de las lipasas secretadas por el hongo Candida, su rol como factor de virulencia y su potencial para el desarrollo de nuevos fármacos antifúngicos.