Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.100
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 161(6): 1306-19, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027738

RESUMO

Vertebrate cells have evolved elaborate cell-autonomous defense programs to monitor subcellular compartments for infection and to evoke counter-responses. These programs are activated by pathogen-associated pattern molecules and by various strategies intracellular pathogens employ to alter cellular microenvironments. Here, we show that, when uropathogenic E. coli (UPEC) infect bladder epithelial cells (BECs), they are targeted by autophagy but avoid degradation because of their capacity to neutralize lysosomal pH. This change is detected by mucolipin TRP channel 3 (TRPML3), a transient receptor potential cation channel localized to lysosomes. TRPML3 activation then spontaneously initiates lysosome exocytosis, resulting in expulsion of exosome-encased bacteria. These studies reveal a cellular default system for lysosome homeostasis that has been co-opted by the autonomous defense program to clear recalcitrant pathogens.


Assuntos
Infecções por Escherichia coli/imunologia , Lisossomos/microbiologia , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/fisiologia , Animais , Autofagia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Exocitose , Lisossomos/enzimologia , Lisossomos/metabolismo , Camundongos , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia
2.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31995728

RESUMO

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisossomos/enzimologia , Ubiquitina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adolescente , Adulto , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Feminino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Adulto Jovem
3.
Mol Cell ; 76(1): 163-176.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492633

RESUMO

Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation.


Assuntos
Aminoácidos/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Adipogenia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Glicemia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Insulina/sangue , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transporte Proteico
4.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625033

RESUMO

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Assuntos
Autofagia , Galectinas/metabolismo , Lisossomos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectinas/deficiência , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Serina-Treonina Quinases TOR/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
5.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
6.
Mol Cell ; 65(6): 1029-1043.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306502

RESUMO

Class III PI3-kinase (PI3KC3) is essential for autophagy initiation, but whether PI3KC3 participates in other steps of autophagy remains unknown. The HOPS complex mediates the fusion of intracellular vesicles to lysosome, but how HOPS specifically tethers autophagosome to lysosome remains elusive. Here, we report Pacer (protein associated with UVRAG as autophagy enhancer) as a regulator of autophagy. Pacer localizes to autophagic structures and positively regulates autophagosome maturation. Mechanistically, Pacer antagonizes Rubicon to stimulate Vps34 kinase activity. Next, Pacer recruits PI3KC3 and HOPS complexes to the autophagosome for their site-specific activation by anchoring to the autophagosomal SNARE Stx17. Furthermore, Pacer is crucial for the degradation of hepatic lipid droplets, the suppression of Salmonella infection, and the clearance of protein aggregates. These results not only identify Pacer as a crucial multifunctional enhancer in autophagy but also uncover both the involvement of PI3KC3 and the mediators of HOPS's specific tethering activity in autophagosome maturation.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/genética , Endossomos/enzimologia , Ativação Enzimática , Células HEK293 , Células HeLa , Células Hep G2 , Hepatócitos/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/enzimologia , Fusão de Membrana , Agregados Proteicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Qa-SNARE/genética , Interferência de RNA , Salmonella typhimurium/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
7.
Proc Natl Acad Sci U S A ; 119(39): e2117105119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122205

RESUMO

Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.


Assuntos
Catepsina D , Lisossomos , Mucinas , Animais , Catepsina D/genética , Catepsina D/metabolismo , Glicoproteínas/metabolismo , Humanos , Lisossomos/enzimologia , Mamíferos/metabolismo , Camundongos , Mucinas/metabolismo , Polissacarídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(33): e2203518119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939698

RESUMO

The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos , Manosefosfatos , Mucolipidoses , Transferases (Outros Grupos de Fosfato Substituídos) , Domínio Catalítico , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/enzimologia , Manosefosfatos/metabolismo , Mucolipidoses/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
9.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858317

RESUMO

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Assuntos
Doença de Gaucher , Glucosilceramidase , Doença de Parkinson , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/análise , Glucosilceramidase/genética , Humanos , Corpos de Lewy/enzimologia , Doença por Corpos de Lewy/enzimologia , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Especificidade por Substrato , alfa-Sinucleína/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561222

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pinocitose , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
11.
J Lipid Res ; 65(7): 100574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857781

RESUMO

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration-dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 µM and approximately 30 µM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 µM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.


Assuntos
Lisofosfolipídeos , Lisossomos , Monoglicerídeos , Humanos , Lisossomos/metabolismo , Lisossomos/enzimologia , Monoglicerídeos/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Camundongos , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Lipossomos/metabolismo , Lipidoses/metabolismo , Lipidoses/induzido quimicamente , Lipidoses/enzimologia
12.
J Biol Chem ; 299(7): 104912, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307916

RESUMO

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Príons/química , Príons/metabolismo , Humanos , Lisossomos/enzimologia , Inibidores de Proteases , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Autopsia , Ácido Glutâmico/metabolismo
13.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
14.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009916

RESUMO

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia
15.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668789

RESUMO

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Assuntos
Glicerol/análogos & derivados , Lisossomos , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Lisossomos/metabolismo , Lisossomos/enzimologia , Triglicerídeos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Interferência de RNA , Difosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Diglicerídeos/metabolismo , Ácidos Fosfatídicos/metabolismo
16.
PLoS Genet ; 17(4): e1009406, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830999

RESUMO

Phospholipase D3 (PLD3) is a protein of unclear function that structurally resembles other members of the phospholipase D superfamily. A coding variant in this gene confers increased risk for the development of Alzheimer's disease (AD), although the magnitude of this effect has been controversial. Because of the potential significance of this obscure protein, we undertook a study to observe its distribution in normal human brain and AD-affected brain, determine whether PLD3 is relevant to memory and cognition in sporadic AD, and to evaluate its molecular function. In human neuropathological samples, PLD3 was primarily found within neurons and colocalized with lysosome markers (LAMP2, progranulin, and cathepsins D and B). This colocalization was also present in AD brain with prominent enrichment on lysosomal accumulations within dystrophic neurites surrounding ß-amyloid plaques. This pattern of protein distribution was conserved in mouse brain in wild type and the 5xFAD mouse model of cerebral ß-amyloidosis. We discovered PLD3 has phospholipase D activity in lysosomes. A coding variant in PLD3 reported to confer AD risk significantly reduced enzymatic activity compared to wild-type PLD3. PLD3 mRNA levels in the human pre-frontal cortex inversely correlated with ß-amyloid pathology severity and rate of cognitive decline in 531 participants enrolled in the Religious Orders Study and Rush Memory and Aging Project. PLD3 levels across genetically diverse BXD mouse strains and strains crossed with 5xFAD mice correlated strongly with learning and memory performance in a fear conditioning task. In summary, this study identified a new functional mammalian phospholipase D isoform which is lysosomal and closely associated with both ß-amyloid pathology and cognition.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Predisposição Genética para Doença , Fosfolipase D/genética , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Autopsia , Disfunção Cognitiva/enzimologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Células HeLa , Humanos , Lisossomos/enzimologia , Lisossomos/patologia , Camundongos , Neurônios/enzimologia , Neurônios/patologia , Placa Amiloide/enzimologia , Placa Amiloide/genética , Placa Amiloide/patologia
17.
Reprod Domest Anim ; 59(6): e14643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877774

RESUMO

Progesterone has been shown to stimulate glycogen catabolism in uterine epithelial cells. Acid α-glucosidase (GAA) is an enzyme that breaks down glycogen within lysosomes. We hypothesized that progesterone may stimulate glycogenolysis in the uterine epithelium via GAA. We found that GAA was more highly expressed in the stroma on Day 1 than on Day 11. However, GAA did not appear to differ in the epithelium on Days 1 and 11. Progesterone (0-10 µM) had no effect on the levels of the full-length inactive protein (110 kDa) or the cleaved (active) peptides present inside the lysosome (70 and 76 kDa) in immortalized bovine uterine epithelial (BUTE) cells. Furthermore, the activity of GAA did not differ between the BUTE cells treated with 10 µM progesterone or control. Overall, we confirmed that GAA is present in the cow endometrium and BUTE cells. However, progesterone did not affect protein levels or enzyme activity.


Assuntos
Endométrio , Progesterona , alfa-Glucosidases , Animais , Bovinos , Feminino , Endométrio/metabolismo , Endométrio/enzimologia , Progesterona/farmacologia , Progesterona/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/genética , Células Epiteliais/metabolismo , Glicogenólise , Lisossomos/enzimologia , Lisossomos/metabolismo , Glicogênio/metabolismo
18.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928321

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.


Assuntos
Doença de Gaucher , Glucosilceramidase , Proteínas de Membrana Lisossomal , Receptores Depuradores , Saposinas , Glucosilceramidase/genética , Glucosilceramidase/deficiência , Glucosilceramidase/metabolismo , Humanos , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Saposinas/deficiência , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Hexosaminidases/metabolismo , Hexosaminidases/genética , Hexosaminidases/deficiência , Masculino , Feminino
19.
PLoS Pathog ; 17(11): e1009820, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807954

RESUMO

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


Assuntos
COVID-19/virologia , Furina/metabolismo , Coativadores de Receptor Nuclear/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Linhagem Celular , Endossomos/metabolismo , Furina/genética , Expressão Gênica , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Lisossomos/enzimologia , Coativadores de Receptor Nuclear/genética , Isoformas de Proteínas , Proteólise , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Pseudotipagem Viral , Internalização do Vírus
20.
Nature ; 541(7636): 228-232, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28024296

RESUMO

Although long non-coding RNAs (lncRNAs) are non-protein-coding transcripts by definition, recent studies have shown that a fraction of putative small open reading frames within lncRNAs are translated. However, the biological significance of these hidden polypeptides is still unclear. Here we identify and functionally characterize a novel polypeptide encoded by the lncRNA LINC00961. This polypeptide is conserved between human and mouse, is localized to the late endosome/lysosome and interacts with the lysosomal v-ATPase to negatively regulate mTORC1 activation. This regulation of mTORC1 is specific to activation of mTORC1 by amino acid stimulation, rather than by growth factors. Hence, we termed this polypeptide 'small regulatory polypeptide of amino acid response' (SPAR). We show that the SPAR-encoding lncRNA is highly expressed in a subset of tissues and use CRISPR/Cas9 engineering to develop a SPAR-polypeptide-specific knockout mouse while maintaining expression of the host lncRNA. We find that the SPAR-encoding lncRNA is downregulated in skeletal muscle upon acute injury, and using this in vivo model we establish that SPAR downregulation enables efficient activation of mTORC1 and promotes muscle regeneration. Our data provide a mechanism by which mTORC1 activation may be finely regulated in a tissue-specific manner in response to injury, and a paradigm by which lncRNAs encoding small polypeptides can modulate general biological pathways and processes to facilitate tissue-specific requirements, consistent with their restricted and highly regulated expression profile.


Assuntos
Complexos Multiproteicos/metabolismo , Músculos/fisiologia , Peptídeos/metabolismo , RNA Longo não Codificante/genética , Regeneração/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Endossomos/metabolismo , Edição de Genes , Células HEK293 , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/agonistas , Músculos/lesões , Especificidade de Órgãos , Peptídeos/deficiência , Peptídeos/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA