Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092889

RESUMO

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Assuntos
Transdiferenciação Celular , Dexametasona , Glaucoma , Miofibroblastos , Fatores de Troca de Nucleotídeo Guanina Rho , Malha Trabecular , Dexametasona/farmacologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Transdiferenciação Celular/efeitos dos fármacos , Animais , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Glaucoma/patologia , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacologia , Camundongos Endogâmicos C57BL , Masculino
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753495

RESUMO

Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.


Assuntos
Cílios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Malha Trabecular/metabolismo , Autofagia , Células Cultivadas , Cílios/patologia , Técnicas de Silenciamento de Genes , Humanos , Pressão Intraocular/fisiologia , Microscopia Intravital , Mecanotransdução Celular/genética , Hipertensão Ocular/patologia , Hipertensão Ocular/fisiopatologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Smad2/genética , Proteína Smad3/genética , Estresse Mecânico , Imagem com Lapso de Tempo , Malha Trabecular/citologia , Malha Trabecular/patologia
3.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337505

RESUMO

Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, ß-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis.


Assuntos
Proteínas do Citoesqueleto , Dexametasona , Proteínas do Olho , Glicoproteínas , Complexo de Endopeptidases do Proteassoma , Malha Trabecular , Ubiquitinação , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/citologia , Humanos , Dexametasona/farmacologia , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Células Cultivadas , Ubiquitina/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia
4.
J Cell Physiol ; 238(3): 631-646, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727620

RESUMO

A common adverse response to the clinical use of glucocorticoids (GCs) is elevated intraocular pressure (IOP) which is a major risk factor for glaucoma. Elevated IOP arises due to impaired outflow of aqueous humor (AH) through the trabecular meshwork (TM). Although GC-induced changes in actin cytoskeletal dynamics, contractile characteristics, and cell adhesive interactions of TM cells are believed to influence AH outflow and IOP, the molecular mechanisms mediating changes in these cellular characteristics are poorly understood. Our studies focused on evaluating changes in the cytoskeletal and cytoskeletal-associated protein (cytoskeletome) profile of human TM cells treated with dexamethasone (Dex) using label-free mass spectrometric quantification, identified elevated levels of specific proteins known to regulate actin stress fiber formation, contraction, actin networks crosslinking, cell adhesion, and Wnt signaling, including LIMCH1, ArgBP2, CNN3, ITGBL1, CTGF, palladin, FAT1, DIAPH2, EPHA4, SIPA1L1, and GPC4. Several of these proteins colocalized with the actin cytoskeleton and underwent alterations in distribution profile in TM cells treated with Dex, and an inhibitor of Abl/Src kinases. Wnt/Planar Cell Polarity (PCP) signaling agonists-Wnt5a and 5b were detected prominently in the cytoskeletome fraction of TM cells, and studies using siRNA to suppress expression of glypican-4 (GPC4), a known modulator of the Wnt/PCP pathway revealed that GPC4 deficiency impairs Dex induced actin stress fiber formation, and activation of c-Jun N-terminal Kinase (JNK) and Rho kinase. Additionally, while Dex augmented, GPC4 deficiency suppressed the formation of actin stress fibers in TM cells in the presence of Dex and Wnt5a. Taken together, these results identify the GPC4-dependent Wnt/PCP signaling pathway as one of the crucial upstream regulators of Dex induced actin cytoskeletal reorganization and cell adhesion in TM cells, opening an opportunity to target the GPC4/Wnt/PCP pathway for treatment of ocular hypertension in glaucoma.


Assuntos
Actinas , Proteínas do Citoesqueleto , Citoesqueleto , Dexametasona , Glucocorticoides , Glipicanas , Malha Trabecular , Humanos , Actinas/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dexametasona/farmacologia , Glaucoma/metabolismo , Glaucoma/patologia , Glucocorticoides/farmacologia , Glipicanas/deficiência , Glipicanas/metabolismo , Pressão Intraocular , Malha Trabecular/citologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Citoesqueleto/metabolismo , Polaridade Celular/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Fibras de Estresse/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 117(23): 12856-12867, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439707

RESUMO

The conventional outflow pathway is a complex tissue responsible for maintaining intraocular pressure (IOP) homeostasis. The coordinated effort of multiple cells with differing responsibilities ensures healthy outflow function and IOP maintenance. Dysfunction of one or more resident cell types results in ocular hypertension and risk for glaucoma, a leading cause of blindness. In this study, single-cell RNA sequencing was performed to generate a comprehensive cell atlas of human conventional outflow tissues. We obtained expression profiles of 17,757 genes from 8,758 cells from eight eyes of human donors representing the outflow cell transcriptome. Upon clustering analysis, 12 distinct cell types were identified, and region-specific expression of candidate genes was mapped in human tissues. Significantly, we identified two distinct expression patterns (myofibroblast- and fibroblast-like) from cells located in the trabecular meshwork (TM), the primary structural component of the conventional outflow pathway. We also located Schwann cell and macrophage signatures in the TM. The second primary component structure, Schlemm's canal, displayed a unique combination of lymphatic/blood vascular gene expression. Other expression clusters corresponded to cells from neighboring tissues, predominantly in the ciliary muscle/scleral spur, which together correspond to the uveoscleral outflow pathway. Importantly, the utility of our atlas was demonstrated by mapping glaucoma-relevant genes to outflow cell clusters. Our study provides a comprehensive molecular and cellular classification of conventional and unconventional outflow pathway structures responsible for IOP homeostasis.


Assuntos
Humor Aquoso/metabolismo , Glaucoma/patologia , Pressão Intraocular/fisiologia , Miofibroblastos/metabolismo , Malha Trabecular/metabolismo , Glaucoma/genética , Humanos , Macrófagos/metabolismo , RNA-Seq , Células de Schwann/metabolismo , Análise de Célula Única , Malha Trabecular/citologia
6.
Exp Eye Res ; 214: 108891, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896309

RESUMO

The human anterior segment perfusion culture model is a valuable tool for studying the trabecular meshwork (TM) and aqueous humor outflow in glaucoma. The traditional model relies on whole eye globes resulting in high cost and limited availability. Here, we developed a glue-based method which enabled us to use human corneal rims for perfusion culture experiments. Human corneal rim perfusion culture plates were 3D printed. Human corneal rims containing intact TM were attached and sealed to the plate using low viscosity and high viscosity glues, respectively. The human corneal rims were perfused using the constant flow mode, and the pressure changes were recorded using a computerized system. Outflow facility, TM stiffness, and TM morphology were evaluated. When perfused at rates from 1.2 to 3.6 µl/min, the outflow facility was 0.359 ± 0.216 µl/min/mmHg among 10 human corneal rims. The stiffness of the TM in naïve human corneal rim was similar to that of perfusion cultured human corneal rim. Also, the stiffness of TM of corneal rims perfused with dexamethasone was significantly higher than the control. Human corneal rims with glue contamination in the TM could be differentiated by high baseline intraocular pressure as well as high TM stiffness. Histology studies showed that the TM tissues perfused with plain medium appeared normal. We believed that our glued-based method is a useful tool and low-cost alternative to the traditional anterior segment perfusion culture model.


Assuntos
Humor Aquoso/fisiologia , Córnea/citologia , Modelos Biológicos , Técnicas de Cultura de Órgãos , Malha Trabecular/citologia , Módulo de Elasticidade , Humanos , Pressão Intraocular/fisiologia , Microscopia de Força Atômica , Adesivos Teciduais , Doadores de Tecidos , Malha Trabecular/fisiologia
7.
Exp Eye Res ; 214: 108888, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896106

RESUMO

The trabecular meshwork (TM) is the leading site of aqueous humor outflow in the eye and plays a critical role in maintaining normal intraocular pressure. When the TM fails to maintain normal intraocular pressure, glaucoma may develop. Mitochondrial damage has previously been found in glaucomatous TM cells; however, the precise metabolic activity of glaucomatous TM cells has yet to be quantitatively assessed. Using dexamethasone (Dex) treated primary human TM cells to model glaucomatous TM cells, we measure the respiratory and glycolytic activity of Dex-treated TM cells with an extracellular flux assay. We found that Dex-treated TM cells had quantifiably altered metabolic profiles, including increased spare respiratory capacity and ATP production rate from oxidative phosphorylation. Therefore, we propose that reversing or preventing these metabolic changes may represent an avenue for future research.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dexametasona/farmacologia , Proteínas do Olho/metabolismo , Glucocorticoides/farmacologia , Glicoproteínas/metabolismo , Malha Trabecular/efeitos dos fármacos , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Malha Trabecular/citologia , Malha Trabecular/metabolismo
8.
FASEB J ; 34(5): 7160-7177, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32259357

RESUMO

The trabecular meshwork (TM) is an ocular tissue that maintains intraocular pressure (IOP) within a physiologic range. Glaucoma patients have reduced TM cellularity and, frequently, elevated IOP. To establish a stem cell-based approach to restoring TM function and normalizing IOP, human adipose-derived stem cells (ADSCs) were induced to differentiate to TM cells in vitro. These ADSC-TM cells displayed a TM cell-like genotypic profile, became phagocytic, and responded to dexamethasone stimulation, characteristic of TM cells. After transplantation into naive mouse eyes, ADSCs and ADSC-TM cells integrated into the TM tissue, expressed TM cell markers, and maintained normal IOP, outflow facility, and extracellular matrix. Cell migration and affinity results indicated that the chemokine pair CXCR4/SDF1 may play an important role in ADSC-TM cell homing. Our study demonstrates the possibility of applying autologous or allogeneic ADSCs and ADSC-TM cells as a potential treatment to restore TM structure and function in glaucoma.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/transplante , Glaucoma/terapia , Malha Trabecular/citologia , Tecido Adiposo/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Câmara Anterior/citologia , Câmara Anterior/imunologia , Apoptose , Humor Aquoso/fisiologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiotaxia , Dexametasona/farmacologia , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Xenoenxertos , Humanos , Técnicas In Vitro , Pressão Intraocular/fisiologia , Camundongos , Fagocitose , Medicina Regenerativa , Malha Trabecular/fisiologia
9.
J Pharmacol Sci ; 147(2): 211-221, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34217619

RESUMO

Trabecular meshwork (TM) regulates the intraocular pressure (IOP) through the control of aqueous humor outflow. Previous reports show that TM cells express 11 types of mechanosensitive molecules, including Piezo 1, which sense mechanical stimuli. However, the role of Piezo 1 on TM remains unclear. Thus, in this study, we focused on the Piezo 1 and examined its role in TM cells. Immunostaining showed that Piezo 1 was expressed in mouse TM and human TM cells. Moreover, the eye drops containing Piezo 1 agonist Yoda 1 reduced the IOP in mice, and also reduced fibronectin expression level around the TM. In addition, Piezo 1 activation suppressed human TM cells migration/proliferation, and decreased fibronectin expression level. On the other hand, Piezo 1 activation increased matrix metalloproteinase (MMP)-2 expression responsible for fibronectin degradation. These findings could contribute to the development of new treatments for glaucoma.


Assuntos
Expressão Gênica/genética , Glaucoma/genética , Glaucoma/terapia , Pressão Intraocular/genética , Canais Iônicos/fisiologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos , Terapia de Alvo Molecular , Malha Trabecular/citologia , Malha Trabecular/metabolismo
10.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770791

RESUMO

Effects of a pan-ROCK-inhibitor, ripasudil (Rip), and a ROCK2 inhibitor, KD025 on dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells as a model of steroid-induced glaucoma were investigated. In the presence of Rip or KD025, DEX-treated HTM cells were subjected to permeability analysis of 2D monolayer by transendothelial electrical resistance (TEER) and FITC-dextran permeability, physical properties, size and stiffness analysis (3D), and qPCR of extracellular matrix (ECM), and their modulators. DEX resulted in a significant increase in the permeability, as well as a large and stiff 3D spheroid, and those effects were inhibited by Rip. In contrast, KD025 exerted opposite effects on the physical properties (down-sizing and softening). Furthermore, DEX induced several changes of gene expressions of ECM and their modulators were also modulated differently by Rip and KD025. The present findings indicate that Rip and KD025 induced opposite effects toward 2D and 3D cell cultures of DEX-treated HTM cells.


Assuntos
Dexametasona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Malha Trabecular/citologia , Malha Trabecular/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos
11.
Gene Ther ; 27(3-4): 127-142, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31611639

RESUMO

The trabecular meshwork (TM) of the eye is responsible for maintaining physiological intraocular pressure (IOP). Dysfunction of this tissue results in elevated IOP, subsequent optic nerve damage and glaucoma, the world's leading cause of irreversible blindness. IOP regulation by delivering candidate TM genes would offer an enormous clinical advantage to the current daily-drops/surgery treatment. Initially, we showed that a double-stranded AAV2 (scAAV2) transduced the human TM very efficiently, while its single-stranded form (ssAAV2) did not. Here, we quantified transduction and entry of single- and double-strand serotypes 1, 2.5, 5, 6, 8, and 9 in primary, single individual-derived human TM cells (HTM). scAAV2 exhibited highest transduction in all individuals, distantly followed by scAAV2.5, scAAV6, and scAAV5. Transduction of scAAV1, scAAV8, and scAAV9 was negligible. None of the ssAAV serotypes transduced, but their cell entries were significantly higher than those of their corresponding scAAV. Tyrosine scAAV2 capsid mutants increased transduction in HTM cultured cells and all TM-outflow layers of perfused postmortem human eyes. These studies provide the first serotype optimization for gene therapy of glaucoma in humans. They further reveal biological differences between the AAV forms in HTM cells, whose understanding could contribute to the development of gene therapy of glaucoma.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Glaucoma/terapia , Transdução Genética/métodos , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Transdução Genética/normas
12.
Biochem Biophys Res Commun ; 529(2): 411-417, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703444

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide. Reducing intraocular pressure is currently the only effective treatment. Elevated intraocular pressure is associated with increased resistance of the outflow pathway, mainly the trabecular meshwork (TM). Despite great progress in the field, the development of novel and effective treatment for glaucoma is still challenging. In this study, we reported that human induced pluripotent stem cells (iPSCs) can be cultured as colonies and monolayer cells expressing OCT4, alkaline phosphatase, SSEA4 and SSEA1. After induction to neural crest cells (NCCs) positive to NGFR and HNK1, the iPSCs can differentiate into TM cells. The induced iPSC-TM cells expressed TM cell marker CHI3L1, were responsive to dexamethasone treatment with increased expression of myocilin, ANGPTL7, and formed CLANs, comparable to primary TM cells. To the best of our knowledge, this is the first study that induces iPSCs to TM cells through a middle neural crest stage, which ensures a stable NCC pool and ensures the high output of the same TM cells. This system can be used to develop personalized treatments using patient-derived iPSCs, explore high throughput screening of new drugs focusing on TM response for controlling intraocular pressure, and investigate stem cell-based therapy for TM regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Malha Trabecular/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Glaucoma/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Malha Trabecular/metabolismo , Malha Trabecular/transplante
13.
Biochem Biophys Res Commun ; 527(4): 881-888, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32423825

RESUMO

Evidence indicates that long noncoding RNAs (lncRNAs) participate in the regulation of various physiological and pathological processes including organ fibrosis and eye-related diseases. The important pathological manifestations of open-angle glaucoma (OAG) are human trabecular meshwork cells (HTMCs) apoptosis and excessive deposition of extracellular matrix (ECM) components in TM, which can cause pathological changes in the outflow pathway. To investigate the role and regulation mechanism of lncRNA in HTMCs under oxidative stress, we established an oxidative stress model in HTMCs using hydrogen peroxide (H2O2) followed by RNA sequencing and found that subsets of lncRNAs and mRNAs that closely associate with TGF-ß signaling are differentially regulated in these cells. We then constructed a network with the TGF-ß2 -colocalized and -coexpressed lncRNAs, to investigate the effects and regulatory mechanisms of the potential lncRNAs on ECM deposition in HTMCs. The gain-of-function and loss-of-function experiments demonstrated that lnc-TGFß2-AS1 promotes ECM production via TGF-ß2 in HTMC, suggesting that lnc-TGFß2-AS1 may be a potential glaucoma treatment target.


Assuntos
Matriz Extracelular/genética , RNA Longo não Codificante/genética , Malha Trabecular/citologia , Transcriptoma , Fator de Crescimento Transformador beta2/genética , Linhagem Celular , Matriz Extracelular/metabolismo , Humanos , Estresse Oxidativo , RNA Longo não Codificante/metabolismo , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
14.
Biochem Biophys Res Commun ; 523(2): 522-526, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31902587

RESUMO

Isolation of trabecular meshwork stem cells in vitro provides the foundation of a novel treatment for glaucoma. Trabecular meshwork stem cells (TMSCs) of the fetal calve were extracted and cultured for this experiment. TMSCs were isolated through side population cell sorting. TMSCs were then identified using immunofluorescent staining. Extracellular matrix (ECM) expression in TM cells derived from TMSCs was evaluated with Western blot. Our results showed a positive expression of stem cell markers Notch1 and OCT-3/4 in TMSCs, but no TM cells markers TIMP3 or AQP1. In contrast, primary TM cells expressed these TM cell markers but no stem cell markers. Our result confirmed that there are expression of ECM components, such as fibronectin, laminin, collagen I and collagen IV in TM cells differentiated from TMSCs. CONCLUSION: TM cells derived from TMSCs can secrete ECM components which is important for sustain the physiological function.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco/citologia , Malha Trabecular/citologia , Animais , Biomarcadores/metabolismo , Bovinos , Separação Celular/métodos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Laminina/metabolismo , Células-Tronco/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo
15.
Biotechnol Bioeng ; 117(10): 3150-3159, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589791

RESUMO

Glaucoma is a degenerative eye disease in which damage to the optic nerve leads to a characteristic loss of vision. The primary risk factor for glaucoma is an increased intraocular pressure that is caused by an imbalance of aqueous humor generation and subsequent drainage through the trabecular meshwork (TM) drainage system. The small size, donor tissue limitations, and high complexity of the TM make it difficult to research the relationship between the TM cells and their immediate environment. Thus, a biomaterial-based approach may be more appropriate for research manipulations and in vitro drug development platforms. In this work, human TM (hTM) cells were cultured on various collagen scaffolds containing different glycosaminoglycans (GAGs) and different pore architectures to better understand how hTM cells respond to changes in their extracellular environment. Cellular response was measured by quantifying cellular proliferation and expression of an important extracellular matrix protein, fibronectin. The pore architecture of the scaffolds was altered using freeze-casting technique to make both large and small pores that were aligned or with a non-aligned random structure. The composition of the scaffolds was altered with the addition of chondroitin sulfate and/or hyaluronic acid. It was found that the hTM cells grown on large pore scaffolds proliferate more than those grown on small pores. There was an increase in the fibronectin expression with the incorporation of GAGs, and its morphology was changed by the underlying pore architecture. This work will help provide an insight into the behavior of hTM cells when introducing changes in their microenvironment.


Assuntos
Materiais Biocompatíveis/metabolismo , Sulfatos de Condroitina/metabolismo , Colágeno/metabolismo , Fibronectinas/metabolismo , Glicosaminoglicanos/metabolismo , Alicerces Teciduais/química , Malha Trabecular/fisiologia , Materiais Biocompatíveis/química , Glicosaminoglicanos/química , Humanos , Malha Trabecular/citologia
16.
Mol Pharm ; 17(2): 656-665, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31913044

RESUMO

Incidence ofglaucoma, a severe disease leading to irreversible loss of vision, is increasing with global aging populations. Lowering intraocular pressure (IOP) is the only proven treatment method for glaucoma. Nitric oxide (NO) is an emerging material targeting the conventional outflow pathway by relaxing the trabecular meshwork (TM). However, there is little understanding on the NO level effective in IOP lowering without toxicity. Here, we report a novel long-term NO-releasing polydiazeniumdiolate (NOP) that enables lowering IOP via the conventional outflow pathway. NOP is composed of carbon-bound polydiazeniumdiolate, a stable NO donor moiety. NO release was monitored with accurate parameters by real-time detection of gas and analysis of the accumulated release profile. Based on the NO release information, the selected safe level of NOP exhibited effective TM relaxation and a potential IOP lowering effect in vivo without side effects. This work provides new insights into nitric oxide release behavior that should be considered for glaucoma treatment.


Assuntos
Compostos Azo/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico/uso terapêutico , Animais , Compostos Azo/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Projetos Piloto , Coelhos , Pele/citologia , Malha Trabecular/citologia , Malha Trabecular/efeitos dos fármacos
17.
Mol Ther ; 27(7): 1327-1338, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31129118

RESUMO

Primary open-angle glaucoma (POAG) is considered a lifelong disease characterized by optic nerve deterioration and visual field damage. Although the disease progression can usually be controlled by lowering the intraocular pressure (IOP), therapeutic effects of current approaches do not last long. Gene therapy could be a promising method for persistent treatment of the disease. Our previous study demonstrated that gene transfer of exoenzyme C3 transferase (C3) to the trabecular meshwork (TM) to inhibit Rho GTPase (Rho), the upstream signal molecule of Rho-associated kinase (ROCK), resulted in lowered IOP in normal rodent eyes. In the present study, we show that the lentiviral vector (LV)-mediated C3 expression inactivates RhoA in human TM cells by ADP ribosylation, resulting in disruption of the actin cytoskeleton and altered cell morphology. In addition, intracameral delivery of the C3 vector to monkey eyes leads to persistently lowered IOP without obvious signs of inflammation. This is the first report of using a vector to transduce the TM of an alive non-human primate with a gene that alters cellular machinery and physiology. Our results in non-human primates support that LV-mediated C3 expression in the TM may have therapeutic potential for glaucoma, the leading cause of irreversible blindness in humans.


Assuntos
ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Pressão Intraocular , ADP-Ribosilação/genética , Citoesqueleto de Actina/metabolismo , Animais , Câmara Anterior/metabolismo , Células Cultivadas , Vetores Genéticos/administração & dosagem , Glaucoma de Ângulo Aberto/terapia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus , Macaca mulatta , Masculino , Distribuição Tecidual , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Transdução Genética , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854215

RESUMO

The importance of extracellular vesicles (EVs) as signaling mediators has been emphasized for several pathways with only limited data regarding their role as protective messages during oxidative stress (OS). The ocular drainage system is unique by being continuously exposed to OS and having a one-way flow of the aqueous humor carrying EVs taking role in glaucoma disease. Here, we aimed to examine the ability of EVs derived from the non-pigmented ciliary epithelium (NPCE)-the aqueous humor producing cells exposed to OS-to deliver protecting messages to the trabecular meshwork (TM)-the aqueous humor draining cells-a process with significance to the pathophysiology of glaucoma disease. EVs extracted from media of NPCE cells exposed to non-lethal OS and their unstressed control were incubated with TM cells. The effects of EVs derived from oxidative stressed cells on the activation of the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), a major OS pathway, and of the Wnt pathway, known for its role in primary open-angle glaucoma, were evaluated. EVs derived from oxidized NPCE cells significantly protected TM cells from direct OS. The TM cells uptake of EVs from oxidized NPCE and their cytosolic Nrf2 levels were significantly higher at 8 h post-exposure. EVs derived from oxidized NPCE cells significantly attenuated Wnt protein expression in TM cells and activated major antioxidant genes as measured by qRT-PCR. TM cells exposed to EVs derived from oxidized NPCE cells exhibited significantly lower OS and higher super oxide dismutase and catalase activity. Finally, we were able to show that carbonylated proteins and products of oxidized protein are presented in significantly higher levels in EVs derived from oxidized NPCE cells, supporting their suggested role in the signaling process. We hypothesize that these findings may have implications beyond understanding the pathophysiology of glaucoma disease and that transmitting signals that activate the antioxidant system in target cells represent a broad response common to many tissues communication.


Assuntos
Catalase/genética , Cílios/metabolismo , Vesículas Extracelulares/metabolismo , Superóxido Dismutase/genética , Malha Trabecular/citologia , Linhagem Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Técnicas de Cocultura , Citosol/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Malha Trabecular/metabolismo , Via de Sinalização Wnt
19.
J Cell Mol Med ; 23(3): 1678-1686, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659738

RESUMO

Trabecular meshwork (TM) contains a subset of adult stem cells or progenitors that can be differentiated into corneal endothelial cells, adipocytes and chondrocytes, but not osteocytes or keratocytes. Accordingly, these progenitors can be utilized as a cell-based therapy to prevent blindness caused by glaucoma, corneal endothelial dysfunction and other diseases in general. In this review, we review in vitro expansion techniques for TM progenitors, discuss their phenotypic properties, and highlight their potential clinical applications in various ophthalmic diseases.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Glaucoma/terapia , Malha Trabecular/citologia , Malha Trabecular/transplante , Animais , Humanos
20.
J Cell Biochem ; 120(8): 13382-13391, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30916825

RESUMO

Impaired trabecular meshwork (TM) outflow is implicated in the pathogenesis of primary open-angle glaucoma (POAG). We previously identified the association of a caveolin-1 (CAV1) variant with POAG by genome-wide association study. Here we report a study of CAV1 knockout (KO) effect on human TM cell properties. We generated human CAV1-KO TM cells by CRISPR/Cas9 technology, and we found that the CAV1-KO TM cells less adhered to the surface coating than the wildtype TM cells by 69.34% ( P < 0.05), but showed no difference in apoptosis. Higher endocytosis ability of dextran and transferrin was also observed in the CAV1-KO TM cells (4.37 and 1.89-fold respectively, P < 0.001), compared to the wildtype TM cells. Moreover, the CAV1-KO TM cells had higher expression of extracellular matrix-degrading enzyme genes ( ADMTS13 and MMP14) as well as autophagy-related genes ( ATG7 and BECN1) and protein (LC3B-II) than the wildtype TM cells. In summary, results from this study showed that the CAV1-KO TM cells have reduced adhesion with higher extracellular matrix-degrading enzyme expression, but increased endocytosis and autophagy activities, indicating that CAV1 could be involved in the regulation of adhesion, endocytosis, and autophagy in human TM cells.


Assuntos
Autofagia/fisiologia , Caveolina 1/metabolismo , Adesão Celular/fisiologia , Endocitose/fisiologia , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Autofagia/genética , Caveolina 1/genética , Adesão Celular/genética , Endocitose/genética , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA