Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
2.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142343

RESUMO

The neocortex is unique to mammals and so, for evolutionary studies, researchers have compared eutherians and marsupials. A new paper in Development uncovers key differences in the timing of gene expression changes in the cortical development of the mouse and the similarly sized marsupial, the fat-tailed dunnart. We caught up with the authors from The University of Queensland, Australia, to find out more about their research and their future plans.


Assuntos
Neocórtex/metabolismo , Pesquisadores/psicologia , Animais , Autoria , Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Humanos , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Camundongos , Neocórtex/crescimento & desenvolvimento
3.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35005774

RESUMO

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Assuntos
Evolução Biológica , Eutérios/crescimento & desenvolvimento , Marsupiais/crescimento & desenvolvimento , Neocórtex/crescimento & desenvolvimento , Transcriptoma , Animais , Eutérios/classificação , Eutérios/genética , Marsupiais/classificação , Marsupiais/genética , Camundongos , Neocórtex/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Anat ; 238(2): 426-445, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32974934

RESUMO

A morphological and morphometric study of the skin development in the eastern quoll (Dasyurus viverrinus) was conducted to follow the transition from cutaneous to pulmonary gas exchange in this extremely immature marsupial species. Additionally, the development of the cardiac and respiratory system was followed, to evaluate the systemic prerequisites allowing for cutaneous respiration. The skin in the newborn D. viverrinus was very thin (36 ± 3 µm) and undifferentiated (no hair follicles, no sebaceous and perspiratory glands). Numerous superficial cutaneous capillaries were encountered, closely associated with the epidermis, allowing for gaseous exchange. The capillary volume density was highest in the neonate (0.33 ± 0.04) and decreased markedly during the first 4 days (0.06 ± 0.01). In the same time period, the skin diffusion barrier increased from 9 ± 1 µm to 44 ± 6 µm. From this age on the skin development was characterized by thickening of the different cutaneous layers, formation of hair follicles (day 55) and the occurrence of subcutaneous fat (day 19). The heart of the neonate D. viverrinus had incomplete interatrial, inter-ventricular, and aortico-pulmonary septa, allowing for the possibility that oxygenated blood from the skin mixes with that of the systemic circulation. The fast-structural changes in the systemic circulations (closing all shunts) in the early postnatal period (3 days) necessitate the transition from cutaneous to pulmonary respiration despite the immaturity of the lungs. At this time, the lung was still at the canalicular stage of lung development, but had to be mature enough to meet the respiratory needs of the growing organism. The morphometric results for the skin development of D. viverrinus suggest that cutaneous respiration is most pronounced in neonates and decreases rapidly during the first 3 days of postnatal life. After this time a functional transition of the skin from cutaneous respiration to insulation and protection of the body takes place.


Assuntos
Marsupiais/crescimento & desenvolvimento , Troca Gasosa Pulmonar , Pele/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Sistema Cardiovascular/crescimento & desenvolvimento , Marsupiais/metabolismo , Sistema Respiratório/crescimento & desenvolvimento , Pele/metabolismo
5.
Am Nat ; 195(3): 547-560, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097034

RESUMO

Marsupials show a smaller range of forelimb ecomorphologies than placental mammals, and it is hypothesized that this results from macroevolutionary constraints imposed by the specialized reproductive biology of marsupials. Specifically, the accelerated development of the marsupial forelimb allows neonates to crawl to the mother's pouch but may constrain adult morphology. This hypothesis makes three main predictions: (i) that marsupial forelimbs should show less interspecific disparity than their hindlimbs, (ii) that morphological integration within the marsupial forelimb is stronger than integration between limbs, and (iii) that these patterns should be strongest in diprotodontians, which undergo the most rigorous crawls as neonates. We use a three-dimensional geometric morphometric data set of limb bones for 51 marsupial species to test these predictions. We find that (i) marsupial forelimbs and hindlimbs show similar disparities, (ii) no clear differences in integration exist either within or between limbs, and (iii) the same patterns occur in diprotodontians as in other marsupials, even correcting for lineage age. Therefore, there is currently little evidence that the developmental biology of marsupials has constrained their macroevolutionary patterns. It is possible that functional selection can overcome the effects of developmental constraint on macroevolutionary timescales. Our findings suggest that the role of developmental constraints in explaining the limited phenotypic variability of marsupials (compared with that of placentals) should be reconsidered.


Assuntos
Evolução Biológica , Membro Anterior/crescimento & desenvolvimento , Marsupiais/crescimento & desenvolvimento , Animais , Padronização Corporal , Membro Anterior/anatomia & histologia , Marsupiais/anatomia & histologia , Fenótipo
6.
Zoo Biol ; 38(3): 266-271, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30835876

RESUMO

The growth and development of the endangered Mahogany Glider (Petaurus gracilis) was monitored in a captive population at Burleigh Heads, Queensland, Australia. Video surveillance confirmed that the gestation period for this species was 16 days. Morphometric data and developmental milestones were recorded from 10 Mahogany Gliders from birth to weaning. Growth curves were developed for head length, ulna length, tail length, and body weight. Weekly inspections of female pouches revealed the young's eyelid margins were visible by Day 21, the first hair erupted on the bridge of the nose at Day 30, pigmentation of the body developed at Day 63, and they started detaching from the teat intermittently, and the body was covered in short fur by Day 70. The young were left in the nest alone from Days 84 to 87, their eyes opened between Days 84 and 94, and there was a rapid increase in length and density of fur from Day 98 onwards. At Days 101 to 105 of age the young left the nest box with its mother as back young. Weaning occurred from 184 to 187 days. Typically, the reproductive rate was two young per annum per pair, but one pair produced five young in 19 months. Females produced young from 12 months to 7 years of age, males up to 9.4 years of age. The average longevity of Mahogany Gliders in the studbook in 2018 was 11.6 years. This study provides data on the reproductive biology of the Mahogany Glider that will assist in its captive breeding, management, and conservation.


Assuntos
Marsupiais/crescimento & desenvolvimento , Reprodução/fisiologia , Animais , Espécies em Perigo de Extinção , Feminino , Longevidade , Masculino , Marsupiais/fisiologia , Gravidez , Queensland , Desmame
7.
Artigo em Inglês | MEDLINE | ID: mdl-27705753

RESUMO

Mammals of the Neotropics are characterized by a marked annual cycle of activity, which is accompanied by several physiological changes at the levels of the whole organism, organs and tissues. The physiological characterization of these cycles is important, as it gives insight on the mechanisms by which animals adjust adaptively to seasonality. Here we studied the seasonal changes in blood biochemical parameters in the relict South American marsupial Dromiciops gliroides ("monito del monte" or "little mountain monkey"), under semi-natural conditions. We manipulated thermal conditions in order to characterize the effects of temperature and season on a battery of biochemical parameters, body mass and adiposity. Our results indicate that monitos experience an annual cycle in body mass and adiposity (measured as leptin levels), reaching a maximum in winter and a minimum in summer. Blood biochemistry confirms that the nutritional condition of animals is reduced in summer instead of winter (as generally reported). This was coincident with a reduction of several biochemical parameters in summer, such as betahydroxybutyrate, cholesterol, total protein concentration and globulins. Monitos seem to initiate winter preparation during autumn and reach maximum body reserves in winter. Hibernation lasts until spring, at which time they use fat reserves and become reproductively active. Sexual maturation during summer would be the strongest energetic bottleneck, which explains the reductions in body mass and other parameters in this season. Overall, this study suggests that monitos anticipate the cold season by a complex interaction of photoperiodic and thermal cues.


Assuntos
Aclimatação , Adiposidade , Leptina/sangue , Marsupiais/fisiologia , Estado Nutricional , Ácido 3-Hidroxibutírico/sangue , Animais , Chile , Colesterol/sangue , Hibernação , Marsupiais/sangue , Marsupiais/crescimento & desenvolvimento , Fotoperíodo , Estações do Ano , Soroglobulinas/análise , Aumento de Peso , Redução de Peso
8.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763693

RESUMO

The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected--but similarly unquantified--key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a 'partial mammalian middle ear' as found in many mammaliaforms--probably with a cartilaginous Meckel's cartilage--represents the only developmentally plausible evolutionary DMME precursor.


Assuntos
Evolução Biológica , Orelha Média/anatomia & histologia , Mamíferos/anatomia & histologia , Animais , Dentição , Orelha Média/crescimento & desenvolvimento , Mamíferos/crescimento & desenvolvimento , Marsupiais/anatomia & histologia , Marsupiais/crescimento & desenvolvimento , Monotremados/anatomia & histologia , Monotremados/crescimento & desenvolvimento
9.
J Anat ; 228(3): 384-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26644330

RESUMO

A quantitative comparison of the internal diameters of cerebral feeder arteries (internal carotid and vertebral) and the aorta in developing non-human eutherians, metatherians and monotremes has been made, with the aim of determining if there are differences in cerebral arterial flow between the three infraclasses of mammals such as might reflect differences in metabolism of the developing brain. There were no significant differences between eutherians and metatherians in the internal radius of the aorta or the thickness of the aortic wall, but aortic internal radius was significantly smaller in developing monotremes than therians at the < 10 mm body length range. Aortic thickness in the developing monotremes also rose at a slower rate relative to body length than in metatherians or eutherians. The sums of the internal calibres of the internal carotid and vertebral arteries were significantly lower in metatherians as a group and monotremes compared with non-human eutherians at body lengths up to 20 mm and in metatherians at > 20 mm body length. The internal calibre of the internal carotids relative to the sum of all cerebral feeder arteries was also significantly lower in monotremes at < 10 mm body length compared with eutherians. It was noted that dasyurids differed from other metatherians in several measures of cerebral arterial calibre and aortic internal calibre. The findings suggest that: (i) both aortic outflow and cerebral arterial inflow may be lower in developing monotremes than in therians, particularly at small body size (< 20 mm); (ii) cerebral inflow may be lower in some developing metatherians than non-human eutherians; and (iii) dasyurids have unusual features of cerebral arteries possibly related to the extreme immaturity and small size at which they are born. The findings have implications for nutritional sourcing of the developing brain in the three infraclasses of mammals.


Assuntos
Artérias Cerebrais/crescimento & desenvolvimento , Marsupiais/crescimento & desenvolvimento , Monotremados/crescimento & desenvolvimento , Animais , Circulação Cerebrovascular/fisiologia , Mamíferos/crescimento & desenvolvimento , Especificidade da Espécie
10.
Somatosens Mot Res ; 32(2): 87-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25393314

RESUMO

Metatherians and monotremes are born in an immature state, followed by prolonged nurturing by maternal lactation. Quantitative analysis of isocortical sections held in the collections at the Museum für Naturkunde, Berlin was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness between metatherian groups, monotremes, and the laboratory rat. Analysis indicated that the pace of pallial growth in the monotremes is much lower than that in the metatherians or laboratory rat, with an estimated 8.6-fold increase in parietal cortex thickness between 10 and 100 mm body length, compared to a 10- to 20-fold increase among the metatherians and the rat. It was found that aggregation of cortical plate neurons occurs at similar embryo size in the mammals studied (around 8-14 mm body length) and a similar pallial thickness (around 200 µm), but that proliferative zone involution occurs at a much higher body size and pallial thickness in the monotremes compared to the metatherians and the laboratory rat. The observations suggest that cortical development in the monotremes is slower and subject to different regulatory signals to the therians studied. The slow pace may be related to either generally slower metabolism in monotremes or less efficient nutrient supply to the offspring due to the lack of teats.


Assuntos
Marsupiais , Monotremados , Ratos , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Ventrículos Cerebrais/anatomia & histologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Embrião de Mamíferos , Modelos Lineares , Marsupiais/anatomia & histologia , Marsupiais/embriologia , Marsupiais/crescimento & desenvolvimento , Monotremados/anatomia & histologia , Monotremados/embriologia , Monotremados/crescimento & desenvolvimento , Ratos/anatomia & histologia , Ratos/embriologia , Ratos/crescimento & desenvolvimento , Especificidade da Espécie
11.
Differentiation ; 87(1-2): 23-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24433705

RESUMO

Marsupials differ from eutherian mammals in their reproductive strategy of delivering a highly altricial young after a short gestation. The young, with its undeveloped organ systems completes its development post-natally, usually within a pouch. The young is dependent on milk with a composition that varies through lactation to support its growth and changing needs as it matures over a lengthy period. Gonadal differentiation occurs after birth, providing a unique opportunity to examine the effects of hormonal manipulations on its sexual differentiation of the highly accessible young. In marsupials a difference in the migration of the urinary ducts around the genital ducts from eutherian mammals results in the unique tammar reproductive tract which has three vaginae and two cervices, and two distinctly separate uteri. In the tammar wallaby, a small member of the kangaroo family, we showed that virilisation of the Wolffian duct, prostate and phallus depends on an alternate androgen pathway, which has now been shown to be important for virilisation in humans. Through hormonal manipulations over differing time periods we have achieved sex reversal of both ovaries and testes, germ cells, genital ducts, prostate and phallus. Whilst we understand many of the mechanisms behind sexual differentiation there are still many lessons to be learned from understanding how sex reversal is achieved by using a model such as the tammar wallaby. This will help guide investigations into the major questions of how and why sex determination is achieved in other species. This review discusses the control and development of the marsupial urogenital system, largely drawn from our studies in the tammar wallaby and our ability to manipulate this system to induce sex reversal.


Assuntos
Androgênios/metabolismo , Marsupiais/crescimento & desenvolvimento , Diferenciação Sexual/genética , Sistema Urogenital/crescimento & desenvolvimento , Animais , Feminino , Gônadas/crescimento & desenvolvimento , Masculino , Marsupiais/genética , Ductos Paramesonéfricos/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento
12.
Environ Manage ; 56(3): 664-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924790

RESUMO

Connectivity among fragmented areas of habitat has long been acknowledged as important for the viability of biological conservation, especially within highly modified landscapes. Identifying important habitat patches in ecological connectivity is a priority for many conservation strategies, and the application of 'graph theory' has been shown to provide useful information on connectivity. Despite the large number of metrics for connectivity derived from graph theory, only a small number have been compared in terms of the importance they assign to nodes in a network. This paper presents a study that aims to define a new set of metrics and compares these with traditional graph-based metrics, used in the prioritization of habitat patches for ecological connectivity. The metrics measured consist of "topological" metrics, "ecological metrics," and "integrated metrics," Integrated metrics are a combination of topological and ecological metrics. Eight metrics were applied to the habitat network for the fat-tailed dunnart within Greater Melbourne, Australia. A non-directional network was developed in which nodes were linked to adjacent nodes. These links were then weighted by the effective distance between patches. By applying each of the eight metrics for the study network, nodes were ranked according to their contribution to the overall network connectivity. The structured comparison revealed the similarity and differences in the way the habitat for the fat-tailed dunnart was ranked based on different classes of metrics. Due to the differences in the way the metrics operate, a suitable metric should be chosen that best meets the objectives established by the decision maker.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Urbanização , Animais , Austrália , Marsupiais/crescimento & desenvolvimento , Modelos Teóricos , Densidade Demográfica
13.
J Exp Zool B Mol Dev Evol ; 322(8): 643-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25393554

RESUMO

A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution by natural selection is contingent upon the distribution and magnitude of phenotypic variation among individuals, which are in turn the products of developmental processes. Development therefore has the potential to affect the trajectory and rate of phenotypic evolution. Recent research in diverse systems (e.g., mammalian teeth, cichlid skulls, butterfly wings, and marsupial limbs) supports the hypothesis that development biases phenotypic variation and evolution, but suggests that these biases might be system-specific.


Assuntos
Evolução Biológica , Extremidades/embriologia , Variação Genética , Marsupiais/embriologia , Fenótipo , Seleção Genética , Animais , Extremidades/crescimento & desenvolvimento , Marsupiais/crescimento & desenvolvimento , Morfogênese
14.
J Anat ; 224(4): 447-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24298911

RESUMO

The young of marsupials and monotremes are all born in an immature state, followed by prolonged nurturing by maternal lactation in either a pouch or nest. Nevertheless, the level of locomotor ability required for newborn marsupials and monotremes to reach the safety of the pouch or nest varies considerably: some are transferred to the pouch or nest in an egg (monotremes); others are transferred passively by gravity (e.g. dasyurid marsupials); some have only a horizontal wriggle to make (e.g. peramelid and didelphid marsupials); and others must climb vertically for a long distance to reach the maternal pouch (e.g. diprotodontid marsupials). In the present study, archived sections of the inner ear and hindbrain held in the Bolk, Hill and Hubrecht collections at the Museum für Naturkunde, Berlin, were used to test the relationship between structural maturity of the vestibular apparatus and the locomotor challenges that face the young of these different mammalian groups. A system for staging different levels of structural maturity of the vestibular apparatus was applied to the embryos, pouch young and hatchlings, and correlated with somatic size as indicated by greatest body length. Dasyurids are born at the most immature state, with the vestibular apparatus at little more than the otocyst stage. Peramelids are born with the vestibular apparatus at a more mature state (fully developed semicircular ducts and a ductus reuniens forming between the cochlear duct and saccule, but no semicircular canals). Diprotodontids and monotremes are born with the vestibular apparatus at the most mature state for the non-eutherians (semicircular canals formed, maculae present, but vestibular nuclei in the brainstem not yet differentiated). Monotremes and marsupials reach the later stages of vestibular apparatus development at mean body lengths that lie within the range of those found for laboratory rodents (mouse and rat) reaching the same vestibular stage.


Assuntos
Marsupiais/embriologia , Monotremados/embriologia , Vestíbulo do Labirinto/embriologia , Animais , Marsupiais/crescimento & desenvolvimento , Monotremados/crescimento & desenvolvimento , Especificidade da Espécie , Vestíbulo do Labirinto/crescimento & desenvolvimento
15.
Reproduction ; 147(3): 279-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307230

RESUMO

The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.


Assuntos
Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Marsupiais/genética , Camundongos/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Macropodidae/genética , Macropodidae/metabolismo , Masculino , Marsupiais/crescimento & desenvolvimento , Marsupiais/metabolismo , Camundongos/crescimento & desenvolvimento , Camundongos/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Maturidade Sexual/genética , Espermatogônias/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X
16.
BMC Biol ; 11: 52, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23622087

RESUMO

BACKGROUND: In contrast to placental neonates, in which all cranial bones are ossified, marsupial young have only the bones of the oral region and the exoccipital ossified at birth, in order to facilitate suckling at an early stage of development. In this study, we investigated whether this heterochronic shift in the timing of cranial ossification constrains cranial disparity in marsupials relative to placentals. METHODS: We collected three-dimensional (3D) landmark data about the crania of a wide range of extant placentals and marsupials, and from six fossil metatherians (the clade including extant marsupials and their stem relatives), using a laser scanner and a 3D digitizer. Principal components analysis and delta variance tests were used to investigate the distribution and disparity of cranial morphology between different landmark sets (optimizing either number of landmarks or number of taxa) of the whole skull and of individual developmental or functional regions (neurocranium, viscerocranium, oral region) for extant placentals and marsupials. Marsupial and placental data was also compared based on shared ecological aspects including diet, habitat, and time of peak activity. RESULTS: We found that the extant marsupial taxa investigated here occupy a much smaller area of morphospace than the placental taxa, with a significantly (P<0.01) smaller overall variance. Inclusion of fossil taxa did not significantly increase the variance of metatherian cranial shape. Fossil forms generally plotted close to or within the realm of their extant marsupial relatives. When the disparities of cranial regions were investigated separately, significant differences between placentals and marsupials were seen for the viscerocranial and oral regions, but not for the neurocranial region. CONCLUSION: These results support the hypothesis of developmental constraint limiting the evolution of the marsupial skull, and further suggest that the marsupial viscerocranium as a whole, rather than just the early-ossifying oral region, is developmentally constrained.


Assuntos
Evolução Biológica , Marsupiais/anatomia & histologia , Marsupiais/crescimento & desenvolvimento , Modelos Biológicos , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento , Estatística como Assunto , Animais , Bases de Dados como Assunto , Ecossistema , Extinção Biológica , Fósseis , Análise de Componente Principal
17.
Zoo Biol ; 33(1): 36-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24375492

RESUMO

Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release.


Assuntos
Animais de Zoológico/fisiologia , Conservação dos Recursos Naturais , Marsupiais/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Hidrocortisona/sangue , Masculino , Marsupiais/sangue , Marsupiais/crescimento & desenvolvimento , Dinâmica Populacional , Reprodução , Análise de Sobrevida
18.
Arch Oral Biol ; 165: 106018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870611

RESUMO

OBJECTIVE: Tooth growth and wear are commonly used tools for determining the age of mammals. The most speciose order of marsupials, Diprotodontia, is characterised by a pair of procumbent incisors within the lower jaw. This study examines the growth and wear of these incisors to understand their relationship with age and sex. DESIGN: Measurements of mandibular incisor crown and root length were made for two sister species of macropodid (kangaroos and wallabies); Macropus giganteus and Macropus fuliginosus. Histological analysis examined patterns of dentine and cementum deposition within these teeth. Broader generalisability within Diprotodontia was tested using dentally reduced Tarsipes rostratus - a species disparate in body size and incisor function to the studied macropodids. RESULTS: In the macropodid sample it is demonstrated that the hypsodont nature of these incisors makes measurements of their growth (root length) and wear (crown length) accurate indicators of age and sex. Model fitting finds that root growth proceeds according to a logarithmic function across the lifespan, while crown wear follows a pattern of exponential reduction for both macropodid species. Histological results find that secondary dentine deposition and cementum layering are further indicators of age. Incisor measurements are shown to correlate with age in the sample of T. rostratus. CONCLUSIONS: The diprotodontian incisor is a useful tool for examining chronological age and sex, both morphologically and microstructurally. This finding has implications for population ecology, palaeontology and marsupial evolution.


Assuntos
Incisivo , Marsupiais , Animais , Incisivo/anatomia & histologia , Marsupiais/crescimento & desenvolvimento , Marsupiais/anatomia & histologia , Feminino , Masculino , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/anatomia & histologia , Macropodidae/crescimento & desenvolvimento , Macropodidae/anatomia & histologia , Macropodidae/fisiologia , Coroa do Dente/crescimento & desenvolvimento , Coroa do Dente/anatomia & histologia , Cemento Dentário/anatomia & histologia , Determinação da Idade pelos Dentes/métodos , Desgaste dos Dentes/patologia , Dentina
19.
Reproduction ; 145(6): R157-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23481264

RESUMO

This review provides an update on what is currently known about wombat reproductive biology and reports on attempts made to manipulate and/or enhance wombat reproduction as part of the development of artificial reproductive technology (ART) in this taxon. Over the last decade, the logistical difficulties associated with monitoring a nocturnal and semi-fossorial species have largely been overcome, enabling new features of wombat physiology and behaviour to be elucidated. Despite this progress, captive propagation rates are still poor and there are areas of wombat reproductive biology that still require attention, e.g. further characterisation of the oestrous cycle and oestrus. Numerous advances in the use of ART have also been recently developed in the Vombatidae but despite this research, practical methods of manipulating wombat reproduction for the purposes of obtaining research material or for artificial breeding are not yet available. Improvement of the propagation, genetic diversity and management of wombat populations requires a thorough understanding of Vombatidae reproduction. While semen collection and cryopreservation in wombats is fairly straightforward there is currently an inability to detect, induce or synchronise oestrus/ovulation and this is an impeding progress in the development of artificial insemination in this taxon.


Assuntos
Marsupiais/fisiologia , Reprodução , Técnicas de Reprodução Assistida/veterinária , Animais , Animais Selvagens , Animais de Zoológico , Austrália , Cruzamento , Feminino , Variação Genética , Masculino , Marsupiais/anatomia & histologia , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Queensland , Técnicas de Reprodução Assistida/tendências
20.
Bioessays ; 33(3): 173-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21254150

RESUMO

Recently, Weisbecker and Goswami presented the first comprehensive comparative analysis of brain size, metabolic rate, and development periods in marsupial mammals. In this paper, a strictly energetic perspective is applied to identify general mammalian correlates of brain size evolution. In both marsupials and placentals, the duration or intensity of maternal investment is a key correlate of relative brain size, but here I show that allomaternal energy subsidies may also play a role. In marsupials, an energetic constraint on brain size in adults is only revealed if we consider both metabolic and reproductive rates simultaneously, because a strong trade-off between encephalization and offspring production masks the positive correlation between basal metabolic rate and brain size in a bivariate comparison. In conclusion, starting from an energetic perspective is warranted to elucidate relations between ecology, social systems, life history, and brain size in all mammals.


Assuntos
Metabolismo Basal , Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Marsupiais/crescimento & desenvolvimento , Marsupiais/metabolismo , Animais , Tamanho do Órgão , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA