Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.850.054
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 75-94, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34985929

RESUMO

Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Caracteres Sexuais , Fatores Sexuais
2.
Cell ; 187(6): 1354-1357, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490178

RESUMO

Our understanding of sex and gender evolves. We asked scientists about their work and the future of sex and gender research. They discuss, among other things, interdisciplinary collaboration, moving beyond binary conceptualizations, accounting for intersecting factors, reproductive strategies, expanding research on sex-related differences, and sex's dynamic nature.


Assuntos
Pesquisa Biomédica , Identidade de Gênero , Sexo , Feminino , Humanos , Masculino , Caracteres Sexuais
3.
Cell ; 187(6): 1347-1349, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490177

RESUMO

Dr. Shirin Heidari is the lead author of the Sex and Gender Equity in Research (SAGER) guidelines. In this interview with Dr. Isabel Goldman at Cell, she discusses her research, GENDRO, the SAGER guidelines and importance of considering sex- and gender-related variables in research, and her work on sexual and reproductive health in forced displacement.


Assuntos
Identidade de Gênero , Equidade em Saúde , Feminino , Humanos , Masculino , Guias como Assunto , Sexo
4.
Cell ; 187(15): 3904-3918.e8, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38851187

RESUMO

We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.


Assuntos
DNA Mitocondrial , Linhagem , Humanos , DNA Mitocondrial/genética , Feminino , Islândia , Masculino , Mutação , Taxa de Mutação
5.
Cell ; 187(6): 1350-1353, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417438

RESUMO

Dr. Londa Schiebinger is an international leader on the intersection of sex, gender, and science. In this interview with Cell, she discusses the Gendered Innovations project, the persistent STEM gender gap, the importance of considering sex- and gender-related variables and intersectionality in research, and the future of sex and gender research.


Assuntos
Ciência , Feminino , Humanos , Masculino , Previsões , Relações Interpessoais , Pesquisa
6.
Cell ; 187(6): 1327-1334, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490174

RESUMO

To build a just, equitable, and diverse academy, scientists and institutions must address systemic barriers that sex and gender minorities face. This Commentary summarizes (1) critical context informing the contemporary oppression of transgender people, (2) how this shapes extant research on sex and gender, and (3) actions to build an inclusive and rigorous academy for all.


Assuntos
Minorias Sexuais e de Gênero , Pessoas Transgênero , Masculino , Feminino , Humanos , Identidade de Gênero
7.
Cell ; 187(17): 4554-4570.e18, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38981480

RESUMO

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.


Assuntos
Blastocystis , Dieta , Microbioma Gastrointestinal , Obesidade , Humanos , Blastocystis/metabolismo , Masculino , Feminino , Infecções por Blastocystis , Adulto , Pessoa de Meia-Idade , Intestinos/parasitologia , Intestinos/microbiologia , Doenças Cardiovasculares/prevenção & controle , Metagenoma
8.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
9.
Cell ; 187(19): 5393-5412.e30, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39121857

RESUMO

Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.


Assuntos
Duodeno , Microbioma Gastrointestinal , Estresse Psicológico , Nervo Vago , Animais , Camundongos , Duodeno/microbiologia , Nervo Vago/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/fisiologia , Lactobacillus/fisiologia , Neurônios/metabolismo
10.
Cell ; 187(21): 5981-5997.e14, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39243765

RESUMO

Sneezing and coughing are primary symptoms of many respiratory viral infections and allergies. It is generally assumed that sneezing and coughing involve common sensory receptors and molecular neurotransmission mechanisms. Here, we show that the nasal mucosa is innervated by several discrete populations of sensory neurons, but only one population (MrgprC11+MrgprA3-) mediates sneezing responses to a multitude of nasal irritants, allergens, and viruses. Although this population also innervates the trachea, it does not mediate coughing, as revealed by our newly established cough model. Instead, a distinct sensory population (somatostatin [SST+]) mediates coughing but not sneezing, unraveling an unforeseen sensory difference between sneezing and coughing. At the circuit level, sneeze and cough signals are transmitted and modulated by divergent neuropathways. Together, our study reveals the difference in sensory receptors and neurotransmission/modulation mechanisms between sneezing and coughing, offering neuronal drug targets for symptom management in respiratory viral infections and allergies.


Assuntos
Tosse , Espirro , Animais , Camundongos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/virologia , Masculino , Mucosa Nasal/virologia , Mucosa Nasal/metabolismo , Feminino , Traqueia/virologia , Camundongos Endogâmicos C57BL , Humanos , Receptores Acoplados a Proteínas G/metabolismo
11.
Cell ; 187(19): 5376-5392.e17, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39197448

RESUMO

Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Neurônios , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Drosophila melanogaster/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Comportamento Alimentar
12.
Cell ; 187(22): 6251-6271.e20, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39427662

RESUMO

The small intestine contains a two-front nutrient supply environment created by luminal dietary and microbial metabolites (enteral side) and systemic metabolites from the host (serosal side). Yet, it is unknown how each side contributes differentially to the small intestinal physiology. Here, we generated a comprehensive, high-resolution map of the small intestinal two-front nutrient supply environment. Using in vivo tracing of macronutrients and spatial metabolomics, we visualized the spatiotemporal dynamics and cell-type tropism in nutrient absorption and the region-specific metabolic heterogeneity within the villi. Specifically, glutamine from the enteral side fuels goblet cells to support mucus production, and the serosal side loosens the epithelial barrier by calibrating fungal metabolites. Disorganized feeding patterns, akin to the human lifestyle of skipping breakfast, increase the risk of metabolic diseases by inducing epithelial memory of lipid absorption. This study improves our understanding of how the small intestine is spatiotemporally regulated by its unique nutritional environment.


Assuntos
Absorção Intestinal , Intestino Delgado , Nutrientes , Intestino Delgado/metabolismo , Animais , Nutrientes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Humanos , Masculino , Glutamina/metabolismo , Células Caliciformes/metabolismo , Feminino
13.
Cell ; 187(22): 6220-6234.e13, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39293447

RESUMO

The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.


Assuntos
Envelhecimento , Proteínas Mutadas de Ataxia Telangiectasia , Replicação do DNA , Animais , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Dano ao DNA , Hepatócitos/metabolismo , Fígado/metabolismo , Origem de Replicação , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino
14.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303691

RESUMO

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Assuntos
Aleitamento Materno , Leite Humano , Humanos , Feminino , Leite Humano/microbiologia , Lactente , Pré-Escolar , Asma/microbiologia , Asma/prevenção & controle , Asma/imunologia , Microbiota , Microbioma Gastrointestinal , Masculino , Estudos de Coortes , Recém-Nascido
15.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38733990

RESUMO

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Assuntos
Bulbo , Medula Espinal , Sistema Nervoso Simpático , Animais , Masculino , Camundongos , Locomoção/fisiologia , Bulbo/fisiologia , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios/fisiologia , Sono REM/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Comportamento Animal , Contagem de Células , Músculo Esquelético
16.
Cell ; 187(17): 4571-4585.e15, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39094567

RESUMO

Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.


Assuntos
Microbiota , Humanos , Idoso , Pré-Escolar , Adulto , Criança , Pessoa de Meia-Idade , Adolescente , Idoso de 80 Anos ou mais , Masculino , Feminino , Lactente , Adulto Jovem , RNA Ribossômico 16S/genética , Estudos Transversais , Recém-Nascido , Sistema Respiratório/microbiologia , Longevidade , Nasofaringe/microbiologia , Saliva/microbiologia , Meio Ambiente
17.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810644

RESUMO

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Assuntos
Diapausa , Animais , Evolução Biológica , Diapausa/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/genética , Peixes Listrados/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Masculino , Feminino
18.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670071

RESUMO

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Assuntos
Prosencéfalo , Animais , Prosencéfalo/metabolismo , Prosencéfalo/embriologia , Camundongos , Ratos , Blastocisto/metabolismo , Feminino , Sistemas CRISPR-Cas/genética , Transcriptoma , Organogênese , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Masculino , Camundongos Endogâmicos C57BL
19.
Cell ; 187(9): 2194-2208.e22, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552625

RESUMO

Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.


Assuntos
Quimioinformática , Desenho de Fármacos , Polifarmacologia , Animais , Camundongos , Humanos , Quimioinformática/métodos , Ligantes , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/química , Masculino , Sítios de Ligação
20.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848678

RESUMO

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Assuntos
Homeostase , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneração , Células-Tronco , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citologia , Diferenciação Celular , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Análise de Célula Única , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA