RESUMO
Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.
Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de TempoRESUMO
Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.
Assuntos
Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Monitoramento Ambiental/métodos , Ecossistema , China , ÍndiaRESUMO
Methylmercury (MeHg) is a bioaccumulating neurotoxin mainly produced by anaerobic microorganisms, with methanogen being one of the important methylators. A critical aspect for understanding the mechanism for microbial mercury (Hg) methylation is the origin of the methyl group. However, the origin of methyl group in methanogen-mediated Hg methylation remains unclear. This study aims to identify the source of methyl group for MeHg synthesis in methanogens. Our study revealed that Hg methylation in Methanospirillum hungatei JF-1 is closely related to methanogenesis process, according to the results of proteomic study and substrate limitation study. Next, we proved that nearly all methyl group in MeHg derives from the Wolfe cycle in this species, rather than the previously demonstrated acetyl-coenzyme A pathway, based on the results of 13C labeling study. We then proposed the Wolfe cycle-dependent Hg methylation mechanism in this species. Further genome analyses and 13C labeling experiments indicated that the involvement of the Wolfe cycle in Hg methylation is probably a universal feature among Hg-methylating methanogens. These findings reveal a unique Hg methylation mechanism in methanogens. Our study broadens the carbon substrates and controlling factors for MeHg synthesis in the environment, which can inform the prediction of MeHg production potential and remediation strategies for MeHg contamination.
Assuntos
Mercúrio , Metano , Methanospirillum , Compostos de Metilmercúrio , Metilação , Compostos de Metilmercúrio/metabolismo , Metano/metabolismo , Mercúrio/metabolismo , Methanospirillum/metabolismo , Methanospirillum/genética , Proteômica/métodosRESUMO
Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.
Assuntos
Plumas , Mercúrio , Animais , Mercúrio/análise , Oceano Atlântico , Plumas/química , Regiões Árticas , Groenlândia , Monitoramento Ambiental/métodos , Aves , Cadeia Alimentar , Poluentes Químicos da Água/análise , EcossistemaRESUMO
Human exposure to monomethylmercury (CH3Hg), a potent neurotoxin, is principally through the consumption of seafood. The formation of CH3Hg and its bioaccumulation in marine food webs experience ongoing impacts of global climate warming and ocean biogeochemistry alterations. Employing a series of sensitivity experiments, here we explicitly consider the effects of climate change on marine mercury (Hg) cycling within a global ocean model in the hypothesized twenty-first century under the business-as-usual scenario. Even though the overall prediction is subjected to significant uncertainty, we identify several important climate change impact pathways. Elevated seawater temperature exacerbates elemental Hg (Hg0) evasion, while decreased surface wind speed reduces air-sea exchange rates. The reduced export of particulate organic carbon shrinks the pool of potentially bioavailable divalent Hg (HgII) that can be methylated in the subsurface ocean, where shallower remineralization depth associated with lower productivity causes impairment of methylation activity. We also simulate an increase in CH3Hg photodemethylation potential caused by increased incident shortwave radiation and less attenuation by decreased sea ice and chlorophyll. The model suggests that these impacts can also be propagated to the CH3Hg concentration in the base of the marine food web. Our results offer insight into synergisms/antagonisms in the marine Hg cycling among different climate change stressors.
Assuntos
Mercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Água do Mar , Cadeia Alimentar , Mudança Climática , Metilação , Poluentes Químicos da Água/análiseRESUMO
A fluorescent dansyl-based amphiphilic probe, 5-(dimethylamino)-N-hexadecylnaphthalene-1-sulfonamide (DLC), was synthesized and characterized to detect multiple analytes at different sensing environments. In acetonitrile, DLC detects nitro explosives such as trinitrophenol (TNP) and 2,4-dinitrophenol (2,4-DNP) by an emission "on-off" response method, and the detection limits (LOD) were estimated to be as low as 4.3 µM and 17.4 µM, respectively. Amphiphilic long chains of the probe were embedded into lipid bilayers to form nanoscale vesicles DLC.Ves. Nanovesicular probe DLC.Ves was found to be highly selective for Hg2+ among other metal ions and for pyrophosphate (PPi) ions among various anions. DLC.Ves could detect Hg2+ with a turn "on-off" emission and PPi with ratiometric change in emission at 525 nm. It is proposed that DLC.Ves could detect Hg2+ via the Hg2+-induced aggregation quenching mechanism and PPi through the Hydrogen bonding. The LODs are estimated as 6.41 µM and 70.9 µM for Hg2+ and PPi, respectively. 1H NMR, SEM, and fluorescence lifetime measurements confirmed the binding mechanism. Thus, it is believed that the simple fluorescent probe DLC could be a prominent sensor to detect multiple analytes depending on the sensing medium.
Assuntos
Mercúrio , Íons , Picratos , Mercúrio/química , Fluorescência , Corantes Fluorescentes/químicaRESUMO
A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.
Assuntos
Compostos de Boro , Mercúrio , Quinolinas , Corantes , ÍonsRESUMO
A chromone-based ratiometric fluorescent probe L2 was developed for the selective detection of Hg(II) in a semi-aqueous solution based on aggregation-induced emission (AIE) and chelation-enhanced fluorescence (CHEF) effect. The probe L2 fluoresced significantly at 498 nm in its aggregated state, and when chelated with Hg(II), the soluble state fluoresced 1-fold higher. In addition, Job's plot reveals that the probe forms a 1:1 stoichiometry complex with Hg(II) with an association constant of 9.10 × 103M-1 estimated by the BH plot. The probe L2 detects Hg(II) down to 22.47 nM without interference from other interfering ions. The FTIR, ESI mass, and DFT-based computational studies investigated the binding mechanism of probe L2 with Hg(II). Taking advantage of its AIE characteristics, the probe L2 was successfully applied for bio-capability analysis in Caenorhabditis elegans (a nematode worm) imaging of Hg(II) in a living model.
Assuntos
Caenorhabditis elegans , Mercúrio , Animais , Mercúrio/análise , Corantes Fluorescentes , Espectrometria de Fluorescência , Imagem Óptica/métodosRESUMO
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
Assuntos
Ouro/química , Proteínas/química , Microscopia Crioeletrônica , Cisteína/química , Mercúrio/química , Modelos Moleculares , Proteínas/ultraestruturaRESUMO
This paper explores the chemistry of mercury as described in ancient alchemical literature. Alchemy's focus on the knowledge and manipulation of natural substances is not so different from modern chemistry's purposes. The great divide between the two is marked by the way of conceptualizing and recording their practices. Our interdisciplinary research group, composed of chemists and historians of science, has set off to explore the cold and hot extraction of mercury from cinnabar. The ancient written records have been perused in order to devise laboratory experiments that could shed light on the material reality behind the alchemical narratives and interpret textual details in a unique perspective. In this way, it became possible to translate the technical lore of ancient alchemy into the modern language of chemistry. Thanks to the replication of alchemical practices, chemistry can regain its centuries-long history that has fallen into oblivion.
Assuntos
Alquimia , Química , Mercúrio , Química/história , História Antiga , Pesquisa Interdisciplinar , Conhecimento , Mercúrio/história , NarraçãoRESUMO
Fungi are central to every terrestrial and many aquatic ecosystems, but the mechanisms underlying fungal tolerance to mercury, a global pollutant, remain unknown. Here, we show that the plant symbiotic fungus Metarhizium robertsii degrades methylmercury and reduces divalent mercury, decreasing mercury accumulation in plants and greatly increasing their growth in contaminated soils. M. robertsii does this by demethylating methylmercury via a methylmercury demethylase (MMD) and using a mercury ion reductase (MIR) to reduce divalent mercury to volatile elemental mercury. M. robertsii can also remove methylmercury and divalent mercury from fresh and sea water even in the absence of added nutrients. Overexpression of MMD and MIR significantly improved the ability of M. robertsii to bioremediate soil and water contaminated with methylmercury and divalent mercury. MIR homologs, and thereby divalent mercury tolerance, are widespread in fungi. In contrast, MMD homologs were patchily distributed among the few plant associates and soil fungi that were also able to demethylate methylmercury. Phylogenetic analysis suggests that fungi could have acquired methylmercury demethylase genes from bacteria via two independent horizontal gene transfer events. Heterologous expression of MMD in fungi that lack MMD homologs enabled them to demethylate methylmercury. Our work reveals the mechanisms underlying mercury tolerance in fungi, and may provide a cheap and environmentally friendly means of cleaning up mercury pollution.
Assuntos
Mercúrio , Metarhizium , Compostos de Metilmercúrio , Biodegradação Ambiental , Água , Mercúrio/toxicidade , Filogenia , Ecossistema , Metarhizium/genética , SoloRESUMO
The origin of methylmercury in pelagic fish remains unclear, with many unanswered questions regarding the production and degradation of this neurotoxin in the water column. We used mercury (Hg) stable isotope ratios of marine particles and biota to elucidate the cycling of methylmercury prior to incorporation into the marine food web. The Hg isotopic composition of particles, zooplankton, and fish reveals preferential methylation of Hg within small (< 53 µm) marine particles in the upper 400 m of the North Pacific Ocean. Mass-dependent Hg isotope ratios (δ202Hg) recorded in small particles overlap with previously estimated δ202Hg values for methylmercury sources to Pacific and Atlantic Ocean food webs. Particulate compound specific isotope analysis of amino acids (CSIA-AA) yield δ15N values that indicate more-significant microbial decomposition in small particles compared to larger particles. CSIA-AA and Hg isotope data also suggest that large particles (> 53 µm) collected in the equatorial ocean are distinct from small particles and resemble fecal pellets. Additional evidence for Hg methylation within small particles is provided by a statistical mixing model of even mass-independent (Δ200Hg and Δ204Hg) isotope values, which demonstrates that Hg within near-surface marine organisms (0-150 m) originates from a combination of rainfall and marine particles. In contrast, in meso- and upper bathypelagic organisms (200-1,400 m), the majority of Hg originates from marine particles with little input from wet deposition. The occurrence of methylation within marine particles is supported further by a correlation between Δ200Hg and Δ199Hg values, demonstrating greater overlap in the Hg isotopic composition of marine organisms with marine particles than with total gaseous Hg or wet deposition.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Isótopos de Mercúrio/análise , Mercúrio/análise , Organismos Aquáticos/metabolismo , Neurotoxinas/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes/metabolismo , Isótopos/metabolismo , Água/metabolismo , Aminoácidos/metabolismoRESUMO
Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.
Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Atum , Animais , Ásia , Ecologia , Monitoramento Ambiental/métodos , Europa (Continente) , Cadeia Alimentar , Sedimentos Geológicos/química , Humanos , Metilação , Modelos Teóricos , América do Norte , Oceano Pacífico , Alimentos Marinhos , Água do Mar , Poluentes da Água , Poluentes Químicos da Água/análiseRESUMO
Autism spectrum disorder (ASD) is characterized by repetitive behaviors and deficits in social interaction. Its etiology is not completely clear, but both genetic and environmental factors contribute to and influence its development and course. The increased number of autism cases in recent years has been strongly associated with increased exposure to heavy metals. Mercury (Hg) has gained prominence in the scientific literature as a result of its presence as an urban pollutant and well-described neurotoxicity. This review assessed the relationship between Hg exposure in the pre- and post-natal period and ASD. The systematic review identified observational clinical studies and pre-clinical trials in journals indexed in the PubMed, Embase, ProQuest, and LILACS databases. The aim of this study was to investigate the association between exposure to Hg and ASD and to define the critical period of exposure. A total of 57 articles were selected for this review, with 35 articles (61.40%) identifying a positive association between ASD and Hg, while 22 articles (38.60%) did not find the same outcome. The biological samples most used to analyze Hg body burdens were hair (36.84%) and blood (36.84%). Most case-control studies found an increase in Hg levels in individuals with ASD who were exposed to a polluted environment in the post-natal period. Taken together, the studies suggest that these patients have a deficient detoxification system, and this could worsen the symptoms of the disorder. However, new studies addressing the influence of Hg on the post-natal nervous system and its relationship with ASD should be carried out.
Assuntos
Transtorno do Espectro Autista , Mercúrio , Feminino , Humanos , Gravidez , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/induzido quimicamente , Exposição Ambiental/efeitos adversos , Mercúrio/toxicidadeRESUMO
Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.
Assuntos
Arsênio , Extremófilos , Transferência Genética Horizontal , Rodófitas , Rodófitas/genética , Extremófilos/genética , Arsênio/metabolismo , Mercúrio/metabolismo , Estresse Fisiológico/genética , Inativação Metabólica/genética , Evolução MolecularRESUMO
Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.
Assuntos
Archaea , Bactérias , Sedimentos Geológicos , Mercúrio , Compostos de Metilmercúrio , Rios , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Metagenômica , Humanos , Genoma Bacteriano , Genoma Arqueal , Ecossistema , MicrobiotaRESUMO
Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg2+ detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(µg/L) and a wide linear range (1 ng/L-24.5 µg/L). In addition, the detection of Hg2+ in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.
Assuntos
Técnicas Biossensoriais , Limite de Detecção , Mercúrio , Humanos , Mercúrio/urina , Mercúrio/análise , Transistores Eletrônicos , Gálio/química , EletrodosRESUMO
To boost the enzyme-like activity, biological compatibility, and antiaggregation effect of noble-metal-based nanozymes, folic-acid-strengthened Ag-Ir quantum dots (FA@Ag-Ir QDs) were developed. Not only did FA@Ag-Ir QDs exhibit excellent synergistic-enhancement peroxidase-like activity, high stability, and low toxicity, but they could also promote the lateral root propagation of Arabidopsis thaliana. Especially, ultratrace cysteine or Hg2+ could exclusively strengthen or deteriorate the inherent fluorescence property with an obvious "turn-on" or "turn-off" effect, and dopamine could alter the peroxidase-like activity with a clear hypochromic effect from blue to colorless. Under optimized conditions, FA@Ag-Ir QDs were successfully applied for the turn-on fluorescence imaging of cysteine or the stress response in cells and plant roots, the turn-off fluorescence monitoring of toxic Hg2+, or the visual detection of dopamine in aqueous, beverage, serum, or medical samples with low detection limits and satisfactory recoveries. The selective recognition mechanisms for FA@Ag-Ir QDs toward cysteine, Hg2+, and dopamine were illustrated. This work will offer insights into constructing some efficient nanozyme sensors for multichannel environmental analyses, especially for the prediagnosis of cysteine-related diseases or stress responses in organisms.
Assuntos
Mercúrio , Pontos Quânticos , Pontos Quânticos/toxicidade , Cisteína , Dopamina , Ácido Fólico , Imagem Óptica , Peroxidases , Raízes de PlantasRESUMO
The development of appropriate molecular tools to monitor different mercury speciation, especially CH3Hg+, in living organisms is attractive because its persistent accumulation and toxicity are very harmful to human health. Herein, we develop a novel activity-based ratiometric SERS nanoprobe to selectively monitor Hg2+ and CH3Hg+ in aqueous media and in vivo. In this nanoprobe, a new bifunctional Raman probe bis-s-s'-[(s)-(4-(ethylcarbamoyl)phenyl)boronic acid] (b-(s)-EPBA) was synthesized and immobilized on the surface of gold nanoparticles via a Au-S bond, in which the phenylboronic acid group was employed as the recognition unit for Hg2+ and CH3Hg+ based on the Hg-promoted transmetalation reaction. In the presence of Hg2+ and CH3Hg+, a new surface-enhanced Raman scattering (SERS) peak aroused from of C-Hg appeared at 1080 cm-1, and the SERS intensity at 1002 cm-1 belonged to the B-O symmetric stretching decreased simultaneously. The quantitative tracking of Hg2+ and CH3Hg+ was realized based on the SERS intensity ratio (I1080/I1303) with rapid response (â¼4 min) and high sensitivity, with detection limits of 10.05 and 25.13 nM, respectively. Moreover, the SERS sensor was used for the quantitative detection of Hg2+ and CH3Hg+ in four actual water samples with a high accuracy and excellent recovery. More importantly, cell imaging experiments showed that AuNPs@b-(s)-EPBA could quantitatively detect intracellular CH3Hg+ and had a good concentration dependence in ratiometric SERS imaging. Meanwhile, we demonstrated that AuNPs@b-(s)-EPBA could detect and image CH3Hg+ in zebrafish. We anticipate that AuNPs@b-(s)-EPBA could potentially be used to study the physiological functions related to CH3Hg+ in the future.
Assuntos
Ácidos Borônicos , Ouro , Mercúrio , Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Ácidos Borônicos/química , Mercúrio/análise , Mercúrio/química , Humanos , Nanopartículas Metálicas/química , Ouro/química , Animais , Peixe-Zebra , Propriedades de Superfície , Água/química , Limite de Detecção , Poluentes Químicos da Água/análiseRESUMO
Current molecular logic gates are predominantly focused on the qualitative assessment of target presence, which has certain limitations in scenarios requiring quantitative assessment, such as chemical contaminant monitoring. To bridge this gap, we have developed a novel DNA logic gate featuring a tunable threshold, specifically tailored to the limits of contaminants. At the core of this logic gate is a DNA-gold nanoparticle (AuNP) hybrid film that incorporates aptamer sequences to selectively bind to acetamiprid (ACE) and atrazine (ATR). Upon interaction with these contaminants, the film degrades, releasing AuNPs that, in the presence of Hg2+, catalyze the oxidation of TMB, resulting in a visible blue coloration on test paper. This aptamer-enabled process effectively establishes an OR logic gate, with ACE and ATR as inputs and the appearance of blue color as the output. A key innovation of our system is its tunable input threshold. By adjusting the concentration of Hg2+, we can fine-tune the color mutation points to match the input threshold to predefined limits, such as Maximum Residue Limits (MRLs). This alignment allows semiquantitative assessment of contaminant levels, providing intuitive visual feedback of contaminant exceedance. Validation experiments with spiked samples confirm its accuracy and reliability by closely matching HPLC results. Therefore, our colorimetric DNA logic gate is emerging as a promising tool for easy and semiquantitative monitoring of chemical contaminants across diverse applications.