Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.660
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224778

RESUMO

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Adulto , Animais , Benzilaminas , Quimiocina CXCL2/farmacologia , Ciclamos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Polimorfismo Genético
2.
Cell ; 156(3): 456-68, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485454

RESUMO

The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.


Assuntos
Infecções Bacterianas/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Infecções Urinárias/imunologia , Animais , Antígenos Ly/metabolismo , Quimiocina CXCL2/imunologia , Feminino , Doenças do Sistema Imunitário , Cinética , Transtornos Leucocíticos , Macrófagos/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Neutrófilos/citologia , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/imunologia
3.
Immunity ; 49(2): 326-341.e7, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054204

RESUMO

The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.


Assuntos
Colágeno/metabolismo , Glicoproteínas/metabolismo , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Rigidez Vascular/fisiologia , Animais , Aorta/fisiologia , Feminino , Glicoproteínas/genética , Humanos , Ácido Hialurônico/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
4.
Nature ; 591(7849): 281-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568815

RESUMO

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Assuntos
Macrófagos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos/citologia , Nicotinamida Fosforribosiltransferase/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/citologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fator de Transcrição PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneração/fisiologia , Análise de Célula Única , Peixe-Zebra/imunologia
5.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657049

RESUMO

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas do Tecido Nervoso , Sinapses , Transmissão Sináptica , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Epilepsia/patologia , Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteólise , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
6.
Circ Res ; 134(8): 954-969, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38501247

RESUMO

BACKGROUND: Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS: A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS: Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS: Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ativador de Plasminogênio Tecidual , Metaloproteinase 9 da Matriz/metabolismo , AVC Isquêmico/tratamento farmacológico , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Hemorragia , Edema/tratamento farmacológico , Edema/patologia , Glucose/farmacologia , Infarto/tratamento farmacológico , Hipóxia
7.
J Immunol ; 212(1): 69-80, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982695

RESUMO

Staphylococcus aureus is a significant cause of morbidity and mortality in pulmonary infections. Patients with autosomal-dominant hyper-IgE syndrome due to STAT3 deficiency are particularly susceptible to acquiring staphylococcal pneumonia associated with lung tissue destruction. Because macrophages are involved in both pathogen defense and inflammation, we investigated the impact of murine myeloid STAT3 deficiency on the macrophage phenotype in vitro and on pathogen clearance and inflammation during murine staphylococcal pneumonia. Murine bone marrow-derived macrophages (BMDM) from STAT3 LysMCre+ knockout or Cre- wild-type littermate controls were challenged with S. aureus, LPS, IL-4, or vehicle control in vitro. Pro- and anti-inflammatory responses as well as polarization and activation markers were analyzed. Mice were infected intratracheally with S. aureus, bronchoalveolar lavage and lungs were harvested, and immunohistofluorescence was performed on lung sections. S. aureus infection of STAT3-deficient BMDM led to an increased proinflammatory cytokine release and to enhanced upregulation of costimulatory MHC class II and CD86. Murine myeloid STAT3 deficiency did not affect pathogen clearance in vitro or in vivo. Matrix metalloproteinase 9 was upregulated in Staphylococcus-treated STAT3-deficient BMDM and in lung tissues of STAT3 knockout mice infected with S. aureus. Moreover, the expression of miR-155 was increased. The enhanced inflammatory responses and upregulation of matrix metalloproteinase 9 and miR-155 expression in murine STAT3-deficient as compared with wild-type macrophages during S. aureus infections may contribute to tissue damage as observed in STAT3-deficient patients during staphylococcal pneumonia.


Assuntos
Síndrome de Job , MicroRNAs , Pneumonia Estafilocócica , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus/metabolismo , Ativação de Macrófagos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inflamação/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo
8.
Nature ; 581(7806): 71-76, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376954

RESUMO

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Assuntos
Apolipoproteína E4/genética , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Capilares/patologia , Ciclofilina A/líquido cefalorraquidiano , Ciclofilina A/metabolismo , Feminino , Heterozigoto , Hipocampo/irrigação sanguínea , Humanos , Masculino , Metaloproteinase 9 da Matriz/líquido cefalorraquidiano , Metaloproteinase 9 da Matriz/metabolismo , Giro Para-Hipocampal/irrigação sanguínea , Pericitos/patologia , Tomografia por Emissão de Pósitrons , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Lobo Temporal/irrigação sanguínea , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
9.
Mol Cell Proteomics ; 23(6): 100781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703894

RESUMO

Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.


Assuntos
Peptídeos , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Peptídeos/metabolismo , Peptídeos/análise , Células HeLa , Espectrometria de Massas em Tandem/métodos , Algoritmos , Software , Bases de Dados de Proteínas , Cromatografia Líquida , Anotação de Sequência Molecular , Análise de Dados , Metaloproteinase 9 da Matriz/metabolismo
10.
Am J Pathol ; 194(10): 1879-1897, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032603

RESUMO

In healthy pancreas, pancreatic stellate cells (PaSCs) synthesize the basement membrane, which is mainly composed of type IV collagen and laminin. In chronic pancreatitis (CP), PaSCs are responsible for the production of a rigid extracellular matrix (ECM) that is mainly composed of fibronectin and type I/III collagen. Reactive oxygen species evoke the formation of the rigid ECM by PaSCs. One source of reactive oxygen species is NADPH oxidase (Nox) enzymes. Nox1 up-regulates the expression of Twist1 and matrix metalloproteinase-9 (MMP-9) in PaSCs from mice with CP. This study determined the functional relationship between Twist1 and MMP-9, and other PaSC-produced proteins, and the extent to which Twist1 regulates digestion of ECM proteins in CP. Twist1 induced the expression of MMP-9 in mouse PaSCs. The action of Twist1 was not selective to MMP-9 because Twist1 induced the expression of types I and IV collagen, fibronectin, transforming growth factor, and α-smooth muscle actin. Luciferase assay indicated that Twist1 in human primary PaSCs increased the expression of MMP-9 at the transcriptional level in an NF-κB dependent manner. The digestion of type I/III collagen by MMP-9 secreted by PaSCs from mice with CP depended on Twist1. Thus, Twist1 in PaSCs from mice with CP induced rigid ECM production and MMP-9 transcription in an NF-κB-dependent mechanism that selectively displayed proteolytic activity toward type I/III collagen.


Assuntos
Metaloproteinase 9 da Matriz , Células Estreladas do Pâncreas , Pancreatite Crônica , Proteína 1 Relacionada a Twist , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Matriz Extracelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Proteína 1 Relacionada a Twist/metabolismo , Feminino
11.
FASEB J ; 38(1): e23375, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102968

RESUMO

BACKGROUND: Elevated IL-21 expression which can effectively induce Th17 cell differentiation has been implicated in the pathogenesis of psoriasis, but its role in angiogenesis remains poorly understood. METHODS: PASI and PSI score assessment was applied to evaluate the severity of psoriatic lesions. The expression of IL-21, IL-21 receptor (IL-21R), CD31, VEGFA, MMP-9, and ICAM-1 in skin was determined by immunohistochemistry or quantitative real-time polymerase chain reaction. The serum level of IL-21 was measured by enzyme-linked immunosorbent assay (ELISA). Then, their correlation was analyzed statistically. Human umbilical vein endothelial cells (HUVECs) cocultured with conditional medium from normal human epidermal keratinocytes (NHEKs) were treated with IL-21 and/or M5 cocktail (mixture of IL-1α, IL-17A, IL-22, TNF-α, and oncostatin M). The migration and tube formation of HUVECs were detected, and the levels of VEGFA, MMP-9, and ICAM-1 in NHEKs were measured by Western blotting or ELISA. RESULTS: Increased IL-21 and IL-21R expression was observed in psoriatic sera or skin specimens, with IL-21R mainly locating in keratinocytes and IL-21 in immune cells. Pearson analysis showed significantly positive correlation between IL-21/IL-21R and erythema scores/microvessel density in psoriatic lesions. Moreover, the expression of proangiogenic genes, VEGFA, ICAM-1, and MMP-9 was upregulated in skins of psoriasis. Additionally, in M5 microenvironment, migration and tube formation could be magnified in HUVECs using IL-21 pre-treated NHEK medium. Mechanically, the co-stimulation of IL-21 and M5 to NEHKs increased the expression of ICAM-1. CONCLUSION: IL-21 could regulate keratinocytes to secrete ICAM-1, thereby promoting angiogenesis in psoriasis.


Assuntos
Interleucinas , Psoríase , Humanos , Angiogênese , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Queratinócitos/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Interleucinas/metabolismo
12.
FASEB J ; 38(17): e70016, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39225388

RESUMO

Traumatic brain injury (TBI), which is characterized by acute neurological dysfunction, is also one of the most widely recognized environmental risk factors for various neurological and psychiatric disorders. However, the role of TBI in neurological perturbation and the mechanisms underlying these disorders remain unknown. We evaluated transcriptional changes in cells of the frontal cortex after TBI by exploiting single-cell RNA sequencing (scRNA-Seq). We adopted the gene expression omnibus and scRNA-Seq to identify the mediation by secretogranin II (SCG2) of TBI-induced schizophrenia. Astrocytes are a principal source of SCG2 in the frontal cortex after TBI. Our analysis indicated that SCG2-triggered disruption of the blood-brain barrier (BBB) via the CypA-MMP-9 signaling pathway. Furthermore, astrocytic SCG2 knockout in the frontal cortex reduced BBB damage, mitigated inflammation, and inhibited schizophrenia after TBI. In conclusion, we identified the SCG2-CypA-MMP-9 signaling pathway in reactive astrocytes as a key switch in the protection of the BBB and provided a novel therapeutic avenue for treating psychiatric disorders after TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Esquizofrenia , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos Knockout , Esquizofrenia/metabolismo , Transdução de Sinais
13.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923643

RESUMO

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Assuntos
Antígenos CD , Exossomos , Proteínas Ligadas por GPI , Metaloproteinase 9 da Matriz , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Microambiente Tumoral , Macrófagos Associados a Tumor , Exossomos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Animais , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Camundongos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Metástase Neoplásica , Camundongos Nus , Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Antígeno Carcinoembrionário
14.
Mol Psychiatry ; 29(7): 1968-1979, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38355786

RESUMO

Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.


Assuntos
Transtorno do Espectro Autista , Proteoglicanas de Sulfatos de Condroitina , Hipocampo , Humanos , Criança , Hipocampo/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Masculino , Adolescente , Pré-Escolar , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Perfilação da Expressão Gênica/métodos , Astrócitos/metabolismo , Plasticidade Neuronal , Metaloproteinase 9 da Matriz/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas de Membrana , Receptor trkB
15.
Circ Res ; 133(8): 674-686, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37675562

RESUMO

BACKGROUND: The ADAMTS7 locus was genome-wide significantly associated with coronary artery disease. Lack of the ECM (extracellular matrix) protease ADAMTS-7 (A disintegrin and metalloproteinase-7) was shown to reduce atherosclerotic plaque formation. Here, we sought to identify molecular mechanisms and downstream targets of ADAMTS-7 mediating the risk of atherosclerosis. METHODS: Targets of ADAMTS-7 were identified by high-resolution mass spectrometry of atherosclerotic plaques from Apoe-/- and Apoe-/-Adamts7-/- mice. ECM proteins were identified using solubility profiling. Putative targets were validated using immunofluorescence, in vitro degradation assays, coimmunoprecipitation, and Förster resonance energy transfer-based protein-protein interaction assays. ADAMTS7 expression was measured in fibrous caps of human carotid artery plaques. RESULTS: In humans, ADAMTS7 expression was higher in caps of unstable as compared to stable carotid plaques. Compared to Apoe-/- mice, atherosclerotic aortas of Apoe-/- mice lacking Adamts-7 (Apoe-/-Adamts7-/-) contained higher protein levels of Timp-1 (tissue inhibitor of metalloprotease-1). In coimmunoprecipitation experiments, the catalytic domain of ADAMTS-7 bound to TIMP-1, which was degraded in the presence of ADAMTS-7 in vitro. ADAMTS-7 reduced the inhibitory capacity of TIMP-1 at its canonical target MMP-9 (matrix metalloprotease-9). As a downstream mechanism, we investigated collagen content in plaques of Apoe-/- and Apoe-/-Adamts7-/- mice after a Western diet. Picrosirius red staining of the aortic root revealed less collagen as a readout of higher MMP-9 activity in Apoe-/- as compared to Apoe-/- Adamts7-/- mice. To facilitate high-throughput screening for ADAMTS-7 inhibitors with the aim of decreasing TIMP-1 degradation, we designed a Förster resonance energy transfer-based assay targeting the ADAMTS-7 catalytic site. CONCLUSIONS: ADAMTS-7, which is induced in unstable atherosclerotic plaques, decreases TIMP-1 stability reducing its inhibitory effect on MMP-9, which is known to promote collagen degradation and is likewise associated with coronary artery disease. Disrupting the interaction of ADAMTS-7 and TIMP-1 might be a strategy to increase collagen content and plaque stability for the reduction of atherosclerosis-related events.


Assuntos
Proteína ADAMTS7 , Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Inibidor Tecidual de Metaloproteinase-1 , Animais , Humanos , Camundongos , Proteína ADAMTS7/genética , Aterosclerose/genética , Colágeno/metabolismo , Doença da Artéria Coronariana/genética , Metaloproteinase 9 da Matriz , Placa Aterosclerótica/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Camundongos Knockout para ApoE
16.
Arterioscler Thromb Vasc Biol ; 44(11): 2294-2317, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39206542

RESUMO

BACKGROUND: Platelets play an important role in cardiovascular and cerebrovascular diseases. Abdominal aortic aneurysm (AAA) is a highly lethal, atherosclerosis-related disease with characteristic features of progressive dilatation of the abdominal aorta and degradation of the vessel wall, accompanied by chronic inflammation. Platelet activation and procoagulant activity play a decisive role in the AAA pathology as they might trigger AAA development in both mice and humans. METHODS: The present study investigated the impact of the major platelet collagen receptor GP (platelet glycoprotein) VI in pathophysiological processes underlying AAA initiation and progression. For experimental AAA induction in mice, PPE (porcine pancreatic elastase) and the external PPE model were used. RESULTS: Genetic deletion of GP VI offered protection of mice against aortic diameter expansion in experimental AAA. Mechanistically, GP VI deficiency resulted in decreased inflammation with reduced infiltration of neutrophils and platelets into the aortic wall. Furthermore, remodeling of the aortic wall was improved in the absence of GP VI, as indicated by reduced MMP (matrix metalloproteinase)-2/9 and OPN (osteopontin) plasma levels and an enhanced α-SMA (α-smooth muscle actin) content within the aortic wall, accompanied by reduced cell apoptosis. Consequently, an elevation in intima/media thickness and elastin content was observed in GP VI-deficient PPE mice, resulting in a significantly reduced aortic diameter expansion and reduced aneurysm incidence. In patients with AAA, enhanced plasma levels of soluble GP VI and fibrin, as well as fibrin accumulation within the intraluminal thrombus might serve as new biomarkers to detect AAA early. Moreover, we hypothesize that GP VI might play a role in procoagulant activity and thrombus stabilization via binding to fibrin. CONCLUSIONS: In conclusion, our results emphasize the potential need for a GP VI-targeted antiplatelet therapy to reduce AAA initiation and progression, as well as to protect patients with AAA from aortic rupture.


Assuntos
Aorta Abdominal , Aneurisma da Aorta Abdominal , Plaquetas , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Osteopontina , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas , Remodelação Vascular , Animais , Humanos , Masculino , Camundongos , Actinas/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/sangue , Aortite/patologia , Aortite/sangue , Aortite/metabolismo , Aortite/genética , Apoptose , Coagulação Sanguínea , Plaquetas/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/metabolismo , Osteopontina/sangue , Osteopontina/genética , Elastase Pancreática , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Transdução de Sinais
17.
J Immunol ; 211(8): 1216-1223, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672029

RESUMO

Bullous pemphigoid (BP) is the most common autoimmune bullous skin disease of humans and is characterized by eosinophilic inflammation and circulating and tissue-bound IgG and IgE autoantibodies directed against two hemidesmosomal proteins: BP180 and BP230. The noncollagenous 16A domain (NC16A) of BP180 has been found to contain major epitopes recognized by autoantibodies in BP. We recently established the pathogenicity of anti-NC16A IgE through passive transfer of patient-derived autoantibodies to double-humanized mice that express the human high-affinity IgE receptor, FcεRI, and human NC16A domain (FcεRI/NC16A). In this model, anti-NC16A IgEs recruit eosinophils to mediate tissue injury and clinical disease in FcεRI/NC16A mice. The objective of this study was to characterize the molecular and cellular events that underlie eosinophil recruitment and eosinophil-dependent tissue injury in anti-NC16A IgE-induced BP. We show that anti-NC16A IgEs significantly increase levels of key eosinophil chemoattractants, eotaxin-1 and eotaxin-2, as well as the proteolytic enzyme matrix metalloproteinase-9 (MMP-9) in the lesional skin of FcεRI/NC16A mice. Importantly, neutralization of eotaxin-1, but not eotaxin-2, and blockade of the main eotaxin receptor, CCR3, drastically reduce anti-NC16A IgE-induced disease activity. We further show that anti-NC16A IgE/NC16A immune complexes induce the release of MMP-9 from eosinophils, and that MMP-9-deficient mice are resistant to anti-NC16A IgE-induced BP. Lastly, we find significantly increased levels of eotaxin-1, eotaxin-2, and MMP-9 in blister fluids of BP patients. Taken together, this study establishes the eotaxin-1/CCR3 axis and MMP-9 as key players in anti-NC16A IgE-induced BP and candidate therapeutic targets for future drug development and testing.


Assuntos
Penfigoide Bolhoso , Humanos , Camundongos , Animais , Metaloproteinase 9 da Matriz , Quimiocina CCL24 , Imunoglobulina E , Quimiocina CCL11 , Receptores CCR3 , Colágenos não Fibrilares , Autoantígenos , Imunoglobulina G , Autoanticorpos , Receptores de IgE
18.
Exp Cell Res ; 434(1): 113868, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043722

RESUMO

OBJECTIVE: A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS: In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION: Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.


Assuntos
Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Animais , Ratos , Células Cultivadas , Técnicas de Cocultura , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Miócitos Cardíacos/metabolismo
19.
Exp Cell Res ; 442(2): 114258, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39293522

RESUMO

Liver fibrosis, which is caused by viral infection, toxic exposure, and autoimmune diseases, is a chronic liver disease. Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor of tissue-type plasminogen activator (tPA) and urokinase plasminogen activator, which convert plasminogen into plasmin. Therefore, PAI-1 suppresses fibrinolysis by blocking plasmin synthesis and is involved in liver fibrosis via extracellular matrix deposition. Small leucine zipper protein (sLZIP) acts as a transcription factor and plays critical roles in many cellular processes. However, the role of sLZIP in liver fibrosis remains unclear. In this study, we investigated the role of sLZIP in regulating PAI-1 transcription and liver fibrosis. sLZIP knockdown enhanced the expression of PAI-1 at the mRNA and protein levels. sLZIP knockdown also increased PAI-1 secretion and suppressed blood clot lysis by blocking tPA activity. Moreover, conditioned medium derived from sLZIP knockdown cells downregulated the expression of matrix metalloprotease (MMP)-2 and MMP-9 in the presence of tPA in hepatic stellate cells (HSCs). Liver-specific sLZIP knockout mice showed deteriorated liver fibrosis compared to control mice in a bile duct ligation-induced fibrosis model. These findings demonstrate that sLZIP functions as a negative regulator of liver fibrosis by suppressing PAI-1 transcription and HSC activation.


Assuntos
Cirrose Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Camundongos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Masculino , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/genética
20.
Exp Cell Res ; 442(1): 114186, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098465

RESUMO

TGFß1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFß. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFß1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFß1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFß1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFß, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFß1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFß1 induced endogenous TGFß, αSMA, MMP2, MMP9 and Col I mRNA. TGFß1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFß1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFß, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFß1 was confirmed by the use of a TGFß receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFß driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.


Assuntos
Processamento Alternativo , Células Epiteliais , Fibronectinas , Fibrose , Túbulos Renais Proximais , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta1 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Fibrose/metabolismo , Processamento Alternativo/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Comunicação Autócrina , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA