Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 30(5): 611-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26842582

RESUMO

RATIONALE: Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. METHODS: The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. RESULTS: Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 µm) even when agglomerated together. Turbid Allium Cepa cells (~150 µm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. CONCLUSIONS: Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.


Assuntos
Química Encefálica , Chlamydomonas reinhardtii/química , Galactolipídeos/análise , Microdissecção e Captura a Laser/instrumentação , Cebolas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Triglicerídeos/análise , Animais , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Chlamydomonas reinhardtii/citologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Terapia a Laser/instrumentação , Camundongos , Imagem Molecular , Cebolas/citologia , Imagem Óptica , Manejo de Espécimes
2.
Int J Mol Sci ; 16(11): 26832-49, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26569222

RESUMO

During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.


Assuntos
Separação Celular/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , RNA Mensageiro/genética , Análise de Célula Única/métodos , Separação Celular/instrumentação , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Escherichia coli/química , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/instrumentação , Humanos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Fenótipo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , Análise de Célula Única/instrumentação , Thermus/química
3.
J Dairy Sci ; 97(2): 609-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290827

RESUMO

Identification of unwanted microbial contaminants microscopically observed in food products is challenging due to their low abundance in a complex matrix, quite often containing other microorganisms. Therefore, a selective identification method was developed using laser capture microdissection in combination with direct-captured cell PCR. This procedure was validated with Geobacillus stearothermophilus and further used to identify microbial contaminants present in some industrial milk samples. The microscopically observed contaminants were identified as mainly Methylobacterium species.


Assuntos
Microbiologia de Alimentos , Geobacillus stearothermophilus/isolamento & purificação , Microdissecção e Captura a Laser/métodos , Leite/microbiologia , Reação em Cadeia da Polimerase/métodos , Animais , Geobacillus stearothermophilus/genética , Microdissecção e Captura a Laser/instrumentação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/instrumentação , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA
4.
PLoS One ; 19(8): e0308662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39186704

RESUMO

Laser microdissection technology is favored by biomedical researchers for its ability to rapidly and accurately isolate target cells and tissues. However, the precision cutting capabilities of existing laser microdissection systems are hindered by limitations in overall mechanical movement accuracy, resulting in suboptimal cutting quality. Additionally, the use of current laser microdissection systems for target acquisition may lead to tissue burns and reduced acquisition rates due to inherent flaws in the capture methods. To address these challenges and achieve precise and efficient separation and capture of cellular tissues, we integrated a digital micromirror device (DMD) into the existing system optics to modulate spatial light. This allows the system to not only implement the traditional point scanning cutting method but also utilize the projection cutting method.We have successfully cut various patterns on commonly used laser microdissection materials such as PET films and mouse tissues. Under projection cutting mode, we were able to achieve precise cutting of special shapes with a diameter of 7.5 micrometers in a single pass, which improved cutting precision and efficiency. Furthermore, we employed a negative pressure adsorption method to efficiently collect target substances. This approach not only resulted in a single-pass capture rate exceeding 90% for targets of different sizes but also enabled simultaneous capture of multiple targets, overcoming the limitations of traditional single-target capture and enhancing target capture efficiency, and avoiding potential tissue damage from lasers.In summary, the integration of the digital micromirror device into laser microdissection systems significantly enhances cutting precision and efficiency, overcoming limitations of traditional systems. This advancement demonstrates the accuracy and effectiveness of laser microdissection systems in isolating and capturing biological tissues, highlighting their potential in medical applications.


Assuntos
Microdissecção e Captura a Laser , Animais , Camundongos , Microdissecção e Captura a Laser/métodos , Microdissecção e Captura a Laser/instrumentação , Lasers , Luz , Pressão , Adsorção
5.
Anal Biochem ; 439(2): 88-98, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643622

RESUMO

Laser capture microdissection (LCM) is a well-established cell separation technique. It combines microscopy with laser beam technology and allows targeting of specific cells or tissue regions that need to be separated from others. Consequently, this biological material can be used for genome or transcriptome analyses. Appropriate methods of sample preparation, however, are crucial for the success of downstream molecular analysis. The aim of this study was to objectively compare the two main LCM systems, one based on an ultraviolet (UV) laser and the other based on an infrared (IR) laser, on different criteria ranging from user-friendliness to sample quality. The comparison was performed on two types of samples: peripheral blood mononuclear cells and blastocysts. The UV laser LCM system had several advantages over the IR laser LCM system. Not only does the UV system allow faster and more precise sample collection, but also the obtained samples-even single cell samples-can be used for DNA extraction and downstream polymerase chain reaction (PCR) applications. RNA-based applications are more challenging for both LCM systems. Although sufficient RNA can be extracted from as few as 10 cells for reverse transcription quantitative PCR (RT-qPCR) analysis, the low RNA quality should be taken into account when designing the RT-qPCR assays.


Assuntos
Raios Infravermelhos , Microdissecção e Captura a Laser/instrumentação , Lasers/classificação , Raios Ultravioleta , Animais , Blastocisto/citologia , Bovinos , DNA , Microdissecção e Captura a Laser/métodos , Leucócitos Mononucleares/citologia , Reação em Cadeia da Polimerase/métodos , RNA
6.
Tsitologiia ; 54(5): 381-9, 2012.
Artigo em Russo | MEDLINE | ID: mdl-22827035

RESUMO

For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.


Assuntos
Microdissecção e Captura a Laser , Proteômica/métodos , Análise de Célula Única/métodos , Animais , Ciências Forenses , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Lasers/classificação , Medicina , Biologia Molecular
7.
Sud Med Ekspert ; 55(5): 34-7, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23272562

RESUMO

The present study was designed to estimate the possibilities of application of the laser capture microdissection (LCM) technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA. The experimental method employed for the purpose was the multiplex multilocus analysis of autosomal DNA polymorphism in the preparations of buccal epitheliocytes obtained by LCM. The key principles of the study were the application of physical methods for contrast enhancement of the micropreparations (such as phase-contrast microscopy and dark-field microscopy) and PCR-compatible cell lysis. Genotyping was carried out with the use of AmpFISTR Minifiler TM PCR Amplification Kits ("Applied Biosynthesis", USA). It was shown that the technique employed in the present study ensures reliable genotyping of human chromosomal DNA in the pooled preparations containing 10-20 dissected diploid cells each. This result fairly well agrees with the calculated sensitivity of the method. A few practical recommendations are offered.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Identificação Biométrica/métodos , Cromossomos Humanos/genética , DNA/genética , Genética Forense/métodos , Técnicas de Genotipagem/métodos , Microdissecção e Captura a Laser/métodos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/instrumentação , Identificação Biométrica/instrumentação , DNA/isolamento & purificação , Células Epiteliais , Genética Forense/instrumentação , Técnicas de Genotipagem/instrumentação , Humanos , Microdissecção e Captura a Laser/instrumentação , Mucosa Bucal/citologia
8.
Methods Mol Biol ; 2319: 105-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331248

RESUMO

Laser capture microdissection (LCM) enables researchers to selectively evaluate gene expression profiling of a specific cell type within a tissue. Vascular endothelial cells (EC) line the inside of vessel lumen and play an essential role in new blood vessel formation. It remains a challenge to determine vascular ECs-specific genes expression in vivo. Here, we described a method to dissect vascular ECs from the frozen heart tissue by LCM. The total RNA or proteins are then extracted from the ECs for further analysis.


Assuntos
Crioultramicrotomia/métodos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Animais , Células Endoteliais/metabolismo , Imunofluorescência , Coração , RNA/isolamento & purificação , Software
9.
Methods Mol Biol ; 2064: 89-101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31565768

RESUMO

Laser capture microdissection is a valuable technique in individually isolating single cells whether in tissue networks or deposited from a cell suspension. New developments have enabled coupling of laser capture microdissection with mass spectrometry via liquid vortex capture sampling probe. This enables online metabolic profiling of sectioned cells. Here, we describe the protocol used to deposit, isolate, and individually chemically characterize single Allium cepa and Chlamydomonas reinhardtii cells by laser capture microdissection-liquid vortex capture mass spectrometry.


Assuntos
Chlamydomonas reinhardtii/química , Microdissecção e Captura a Laser/instrumentação , Espectrometria de Massas/instrumentação , Metabolômica/instrumentação , Microalgas/química , Cebolas/química , Chlamydomonas reinhardtii/citologia , Desenho de Equipamento , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Microalgas/citologia , Cebolas/citologia , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
10.
Methods Mol Biol ; 2094: 49-58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797290

RESUMO

Rhizobacteria are known to produce a variety of signal molecules which may modify plant growth by interfering with phytohormone balance. Among the microbial signals are phytohormones, known to contribute to plant endogenous pool of phytohormones. The current chapter describes different methods to study the regulation of gene expression in root apical meristem in response to rhizobacterial inoculation. We describe protocol for the detection of in planta modulation of CKs and IAA by rhizobacteria and their impact on root growth, dissecting the underlying plant signaling pathway by RNA sequencing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Microdissecção e Captura a Laser/métodos , Meristema/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , RNA-Seq/métodos , Rhizobiaceae/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Microdissecção e Captura a Laser/instrumentação , Meristema/metabolismo , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Transdução de Sinais/genética
11.
Methods Mol Biol ; 1882: 253-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30378061

RESUMO

Many cancers harbor a large fraction of nonmalignant stromal cells intermixed with neoplastic tumor cells. While single-cell transcriptional profiling methods have begun to address the need to distinguish biological programs in different cell types, such methods do not enable the analysis of spatial information available through histopathological examination. Laser capture microdissection offers a means to separate cellular samples based on morphological criteria. We present here an optimized method to retrieve intact RNA from laser capture microdissected tissue samples, using pancreatic ductal adenocarcinoma as an example, in order to separately profile tumor epithelial and stromal compartments. This method may also be applied to nonmalignant tissues to isolate cellular samples from any morphologically identifiable structure.


Assuntos
Carcinoma Ductal Pancreático/patologia , Secções Congeladas/métodos , Microdissecção e Captura a Laser/métodos , Neoplasias Pancreáticas/patologia , RNA Neoplásico/isolamento & purificação , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Células Epiteliais/patologia , Secções Congeladas/instrumentação , Humanos , Microdissecção e Captura a Laser/instrumentação , Pâncreas/citologia , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , RNA Neoplásico/genética , Células Estromais/patologia
12.
Methods Mol Biol ; 1788: 269-277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28980276

RESUMO

Traditionally, proteomic studies have been carried out on whole tissues or organs enabling the profiling of thousands of proteins within a single LC-MS analysis. A disadvantage of this approach is that proteomes generated from whole tissues are an "average" that represents a blend of cell types and distinct anatomical regions which can obscure important biological phenomena. Laser capture microdissection (LCM) is an elegant method that allows tissue features of interest, as small as a single cell, to be identified and isolated for downstream analysis. Herein we describe an approach that utilizes an immobilized enzyme reactor (IMER) coupled directly to nanoLC-MS/MS for highly sensitive, automated, quantitative proteomic analysis of the microscopic tissue specimens generated by LCM.


Assuntos
Microdissecção e Captura a Laser/instrumentação , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Enzimas Imobilizadas/química , Desenho de Equipamento , Humanos , Microdissecção e Captura a Laser/métodos , Proteômica/instrumentação , Tamanho da Amostra , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/instrumentação
13.
Methods Mol Biol ; 1765: 87-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29589303

RESUMO

Colorectal cancer (CRC) is a key public health concern and the second highest cause of cancer related death in Western society. A dynamic interaction exists between CRC cells and the surrounding tumor microenvironment, which can stimulate not only the development of CRC, but its progression and metastasis, as well as the development of resistance to therapy. In this chapter, we focus on the role of fibroblasts within the CRC tumor microenvironment and describe some of the key methods for their study, as well as the evaluation of dynamic interactions within this biological ecosystem.


Assuntos
Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/patologia , Cultura Primária de Células/métodos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Neoplasias Colorretais/cirurgia , Progressão da Doença , Humanos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Camundongos , Camundongos Nus , Camundongos SCID , Cultura Primária de Células/instrumentação , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/instrumentação
14.
Methods Mol Biol ; 1754: 327-374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29536452

RESUMO

Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Separação Celular/instrumentação , Separação Celular/métodos , Epigênese Genética/genética , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Genômica/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , Análise de Sequência de DNA/instrumentação , Análise de Sequência de RNA/instrumentação , Análise de Célula Única/instrumentação , Transcriptoma/genética
15.
Methods Mol Biol ; 1606: 115-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28501997

RESUMO

Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXT™ laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications.


Assuntos
Encéfalo/anatomia & histologia , Microdissecção e Captura a Laser/métodos , Primatas/anatomia & histologia , Proteômica/métodos , Manejo de Espécimes/métodos , Animais , Encéfalo/metabolismo , Microdissecção e Captura a Laser/instrumentação , Primatas/metabolismo
16.
J Microbiol Methods ; 138: 82-92, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26775287

RESUMO

Laser microdissection is a method that allows for the isolation of homogenous cell populations from their native niches in tissues for downstream molecular assays. This method is widely used for genomic analysis, gene expression profiling and proteomic and metabolite assays in various fields of biology, but it remains an uncommon approach in microbiological research. In spite of the limited number of publications, laser microdissection was shown to be an extremely useful method for studying host-microorganism interactions in animals and plants, investigating bacteria within biofilms, identifying uncultivated bacteria and performing single prokaryotic cell analysis. The current paper describes the methodological aspects of commercially available laser microdissection instruments and representative examples that demonstrate the advantages of this method for resolving a variety of issues in microbiology.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Microdissecção e Captura a Laser/métodos , Análise de Célula Única/métodos , Animais , Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/instrumentação , Plantas/microbiologia
17.
Methods Mol Biol ; 1627: 325-340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28836211

RESUMO

The heterogeneous nature of most human organs and tissues represents a common challenge when analyzing specific structures or cells. Laser capture microdissection (LCM) enables isolation of pure cells from a mixed population of cells or tissue samples via usage of laser energy. Combined with high-throughput gene or protein techniques, compartment specific analysis elucidating the role of specialized cell types in physiological or pathophysiological activity can be performed. This chapter describes the crucial steps that have to be taken into consideration when designing and conducting a LCM project. Detailed protocols describing the workflow from project planning to high-throughput analysis of LCM material used in our laboratory are provided. Routinely occurring challenges and appropriate solutions, e.g., when working with fibrotic tissue are described.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microdissecção e Captura a Laser , RNA/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , RNA/química , Reação em Cadeia da Polimerase em Tempo Real , Fluxo de Trabalho
18.
Methods Mol Biol ; 1381: 39-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26667453

RESUMO

The new opportunities of modern assays of molecular biology can only be exploited fully if the results can be accurately correlated to the tissue phenotype under investigation. This is a general problem of non-in situ techniques, whereas results from in situ techniques are often difficult to quantify. The use of bulk tissue, which is not precisely characterized in terms of histology, has long been the basis for molecular analysis. It has, however, become apparent, that this simple approach is not sufficient for a detailed analysis of molecular alterations, which might be restricted to a specific tissue phenotype (e.g., tumor or normal tissue, stromal or epithelial cells). Microdissection is a method to provide minute amounts of histologically characterized tissues for molecular analysis with non-in situ techniques and has become an indispensable research tool. If tissue diversity is moderate and negligible, manual microdissection can be an easy and cost-efficient method of choice. In contrast, the advantage of laser microdissection is a very exact selection down to the level of a single cell, but often with a considerable time exposure to get enough material for the following analyses. The latter issue and the method of tissue preparation needed for laser microdissection are the main problems to solve if RNA, highly sensitive to degradation, shall be analyzed. This chapter focuses on optimized procedures for manual microdissection and laser microdissection to analyze RNA of malignant and nonmalignant prostate tissue.


Assuntos
Microdissecção e Captura a Laser/métodos , Próstata/patologia , Neoplasias da Próstata/patologia , RNA/análise , Benzoxazinas/análise , Corantes/análise , Desenho de Equipamento , Regulação Neoplásica da Expressão Gênica , Humanos , Microdissecção e Captura a Laser/instrumentação , Masculino , Próstata/metabolismo , Neoplasias da Próstata/genética , RNA/genética , Estabilidade de RNA , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos
19.
Lab Chip ; 15(24): 4578-90, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26507288

RESUMO

We designed a miniaturized and thin polydimethylsiloxane (PDMS) microchannel device compatible with commercial microelectrode array (MEA) chips. It was optimized for selective axonal ablation by laser microdissection (LMD) to investigate the electrophysiological and morphological responses to a focal injury in distinct network compartments over 45 days in vitro (45 DIV). Low-density cortical or hippocampal networks (<3500 neurons per device) were cultured in quasi-closed somal chambers. Their axons were selectively filtered through neurite cavities and guided into the PDMS microchannels aligned over the recording electrodes. The device geometries amplified extracellularly recorded signals in the somal reservoir and the axonal microchannels to detectable levels. Locally extended areas along the microchannel, so-called working stations, forced axonal bundles to branch out and thereby allowed for their repeatable and controllable local, partial or complete dissections. Proximal and distal changes in the activity and morphology of the dissected axons were monitored and compared to those of their parent networks and of intact axons in the control microchannels. Microscopy images confirmed progressive anterograde degeneration of distal axonal segments over four weeks after surgery. Dissection on cortical and hippocampal axons revealed different cell type- and age-dependent network responses. At 17 DIV, network activity increased in both the somal and proximal microchannel compartments of the dissected hippocampal or cortical axons. At later days (24 DIV), the hippocampal networks were more susceptible to axonal injury. While their activity decreased, that in the cortical cultures actually increased. Subsequent partial dissections of the same axonal bundles led to a stepwise activity reduction in the distal hippocampal or cortical axonal fragments. We anticipate that the MEA-PDMS microchannel device for the combined morphological and electrophysiological study of axonal de- and regeneration can be easily merged with other experimental paradigms like molecular or pharmacological screening studies.


Assuntos
Axônios/fisiologia , Dispositivos Lab-On-A-Chip , Regeneração Nervosa , Animais , Axônios/ultraestrutura , Axotomia/instrumentação , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos , Desenho de Equipamento , Hipocampo/citologia , Hipocampo/fisiologia , Microdissecção e Captura a Laser/instrumentação , Microeletrodos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Ratos , Análise Serial de Tecidos/instrumentação
20.
J Clin Pathol ; 68(2): 166-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25430495

RESUMO

AIMS: To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. METHODS: Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. RESULTS: Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). CONCLUSIONS: Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow.


Assuntos
Neoplasias da Mama/química , Microdissecção e Captura a Laser/métodos , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular , Mutação , Proteínas Proto-Oncogênicas/genética , Receptor ErbB-2/análise , Proteínas ras/genética , Automação Laboratorial , Biópsia , Neoplasias da Mama/patologia , Análise Mutacional de DNA , Desenho de Equipamento , Feminino , Fixadores , Formaldeído , Humanos , Microdissecção e Captura a Laser/instrumentação , Neoplasias Pulmonares/patologia , Masculino , Inclusão em Parafina , Valor Preditivo dos Testes , Proteômica , Proteínas Proto-Oncogênicas p21(ras) , Fixação de Tecidos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA