Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 200: 107968, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429540

RESUMO

Microsporidia are emerging intracellular parasites of most known animal phyla in all ecological niches. In shrimp aquaculture, the microsporidium Enterocytozoon hepatopenaei (EHP) is a major cause of concern inflicting tremendous losses to shrimp producers in southeast Asia. During a histopathological examination of Penaeus vannamei samples originating in a country from Latin America presenting slow growth, we observed abnormal nuclei in the epithelial cells of the hepatopancreas. A PCR screening of the samples using DNA isolated from paraffin embedded tissues for the SSU rRNA gene of EHP provided a 149 bp amplicon. In situ hybridization using the SSU rRNA gene probe provided a positive signal in the nuclei instead of the cytoplasm. Sequence analysis of the SSU rRNA gene product revealed a 91.3 %, 89.2 % and 85.4 % sequence identity to Enterocytozoon bieneusi, E. hepatopenaei and Enterospora canceri respectively. Furthermore, phylogenetic analysis revealed the newly discovered microsporidium clustered with E. bieneusi. Considering the intranuclear location of the novel microsporidium and the differences in the sequence of the SSU rRNA, we tentatively consider this parasite a new member of the genus Enterospora sp. The pathogenicity and distribution of the shrimp Enterospora sp. are currently unknown. Our future efforts are focused on the characterization and development of diagnostic tools for this parasite to understand if it acts as an emergent pathogen that might require surveillance to prevent its spread.


Assuntos
Enterocytozoon , Microsporídios não Classificados , Penaeidae , Animais , Microsporídios não Classificados/genética , Penaeidae/parasitologia , América Latina , Filogenia , Enterocytozoon/genética , RNA Ribossômico
2.
J Invertebr Pathol ; 200: 107958, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429541

RESUMO

Several PCR methodologies are available for the detection of Enterocytozoon hepatopenaei (EHP) that target the SSU rRNA gene. However, these methodologies are reported as unsuitable for the detection of EHP due to specificity issues. Here, we report the applicability of two commonly used SSU rRNA methodologies for the detection of additional microsporidia from the genus Vittaforma that is present in cultured Penaeus vannamei from Costa Rica. The molecular detection of DNA of the novel microsporidia can only be achieved using SSU rRNA targeting methodologies and does not cross-react with the highly specific spore wall protein gene PCR detection method.


Assuntos
Enterocytozoon , Microsporídios não Classificados , Microsporídios , Penaeidae , Animais , Microsporídios não Classificados/genética , Penaeidae/genética , Vittaforma/genética , Costa Rica , Reação em Cadeia da Polimerase/métodos , Enterocytozoon/genética , Microsporídios/genética , RNA Ribossômico
3.
Parasitol Res ; 121(8): 2337-2346, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35754088

RESUMO

A new microsporidian infecting Gadus chalcogrammus Pallas, 1814 (Gadidae), is described based on morphological, ultrastructural, and molecular studies. This microsporidian parasite develops inside intramuscular spindle-shaped lesions measuring approximately 1-2 mm in width and 4-8 mm in length. Infected cells encapsulated by a host-produced wall containing a sponge-like acellular zone. Sporogony presumably proceeds via segmentation of sporogonial plasmodium, resulting in a variable number of spores. Sporogonial stages develop in sporophorous vesicles (SVs), abutting a moderately electron-dense thick walled coat of a homogeneous amorphous material. SVs space contains rare granular and tubular inclusions. Neighboring SVs often interconnected by bridges of the host cell cytoplasm that were limited by membrane comparable with SV coat. The elongate-ovoid spores, measuring 4.29 ± 0.38 × 2.51 ± 0.26 µm (N 104), possess a bipartite polaroplast and polar tube with 15-16 coils arranged in 2-3 layers. The angle of tilt of the polar tube coils is less than 30°. The sequence analysis of SSU rDNA coding region showed that the studied microsporidians differs from other fish muscle-infecting species at least in 17 bp (2.58%) and is closely related to Microsporidium cypselurus Yokoyama et al. (2002) infecting the flying fish from East China Sea. The parasite is provisionally positioned as Microsporidium theragrae sp. n.


Assuntos
Gadiformes , Microsporídios não Classificados , Microsporídios , Microsporidiose , Parasitos , Alaska , Animais , Peixes , Microsporídios não Classificados/genética , Microsporidiose/parasitologia , Filogenia
4.
Parasitol Res ; 120(2): 497-514, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415390

RESUMO

A novel microsporidial disease was documented in two ornamental fish species, black tetra Gymnocorymbus ternetzi Boulenger 1895 and cardinal tetra Paracheirodon axelrodi Schultz 1956. The non-xenoma-forming microsporidium occurred diffusely in most internal organs and the gill, thus referring to the condition as tetra disseminated microsporidiosis (TDM). The occurrence of TDM in black tetra was associated with chronic mortality in a domestic farmed population, while the case in cardinal tetra occurred in moribund fish while in quarantine at a public aquarium. Histology showed that coelomic visceral organs were frequently necrotic and severely disrupted by extensive infiltrates of macrophages. Infected macrophages were presumed responsible for the dissemination of spores throughout the body. Ultrastructural characteristics of the parasite developmental cycle included uninucleate meronts directly in the host cell cytoplasm. Sporonts were bi-nucleated as a result of karyokinesis and a parasite-produced sporophorous vesicle (SPV) became apparent at this stage. Cytokinesis resulted in two spores forming within each SPV. Spores were uniform in size, measuring about 3.9 ± 0.33 long by 2.0 ± 0.2 µm wide. Ultrastructure demonstrated two spore types, one with 9-12 polar filament coils and a double-layered exospore and a second type with 4-7 polar filament coils and a homogenously electron-dense exospore, with differences perhaps related to parasite transmission mechanisms. The 16S rDNA sequences showed closest identity to the genus Glugea (≈ 92%), though the developmental cycle, specifically being a non-xenoma-forming species and having two spores forming within a SPV, did not fit within the genus. Based on combined phylogenetic and ultrastructural characteristics, a new genus (Fusasporis) is proposed, with F. stethaprioni n. gen. n. sp. as the type species.


Assuntos
Characidae/parasitologia , Doenças dos Peixes/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/patogenicidade , Microsporidiose/veterinária , Animais , Animais Domésticos , Characidae/classificação , DNA Ribossômico/genética , Doenças dos Peixes/patologia , Macrófagos/parasitologia , Microsporídios não Classificados/citologia , Microsporídios não Classificados/genética , Microsporidiose/microbiologia , Microsporidiose/patologia , Filogenia , Esporos Fúngicos/citologia , Esporos Fúngicos/patogenicidade
5.
Parasitol Res ; 119(3): 915-923, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970472

RESUMO

A new species and a new genus of a microsporidium Alternosema bostrichidis isolated from an adult Prostephanus truncatus in Mexico and from three species of the genus Dinoderus in Nigeria are described. The microsporidium is monomorphic, monoxenic, and develops in direct contact with host cell cytoplasm. The infection first appears with thoracic muscles, followed by a generalized invasion of the host. All developmental stages are diplokaryotic. Sporogony is disporoblastic. Mature spores are ovoid. Unfixed spores measure 3.7-4.2 × 2.0-2.6 µm, fixed and stained spores 3.5-5.0 × 2.4-2.8 µm. The polaroplast consists of dense lamellae and rare lamellae. The polar tube is slightly anisofilar, consisting of 11-17 coils, with 9-14 proximal (130 nm in diameter) and 2-3 distal coils (120 nm in diameter) arranged in one layer. Molecular phylogenetic analysis based upon a short portion of small-subunit ribosomal RNA gene (Genbank accession # KP455651) placed the new microsporidium within Liebermannia-Orthosomella lineage, which contains multiple undescribed parasites. In particular, A. bostrichidis showed maximal sequence similarity of 95% to Microsporidium sp. BBRE2 (# FJ755987) from Baikalian Diplacanthus brevispinus (Amphipoda: Acanthogammaridae) and Microsporidium sp. Comp CD Van 2 (# KC111784) from compost and soil in Canada. Frequent, devastating epizootics of laboratory cultures of A. bostrichidis support its potential as a biological control agent of grain borers.


Assuntos
Anfípodes/microbiologia , Agentes de Controle Biológico , Besouros/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/isolamento & purificação , Animais , Canadá , México , Microsporídios não Classificados/genética , Nigéria , Filogenia , Prevalência , Esporos Fúngicos/classificação
6.
Parasitology ; 145(11): 1452-1457, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29547364

RESUMO

The microsporidian parasite Hamiltosporidium tvaerminnensis can infect Daphnia magna both horizontally (through environmental spores) and vertically (through parthenogenetic and sexually produced eggs). The spores of H. tvaerminnensis come in three distinguishable morphologies, which are thought to have different roles in the transmission of the parasite. In this study, we examined the role of the two most common spore morphologies (i.e. oval-shaped spores and pear-shaped spores) in horizontal transmission of H. tvaerminnensis. To this end, we infected hosts with solutions consisting of either mostly oval- or mostly pear-shaped spores, and quantified infection rates, parasite-induced host mortality and mean number of parasite spores produced per host. We found that spore morphology by itself did not influence infection rates and parasite-induced host mortality. Instead, host clone and parasite isolate interacted with spore morphology in shaping infection outcome and mortality. Thus, there appear to be strong genotype-by-genotype (G × G) interactions in this system. While there is no dispute that H. tvaerminnensis can transmit both vertically and horizontally, our findings do not support theoretical predictions that different spore morphologies hold different roles in horizontal transmission of H. tvaerminnensis.


Assuntos
Daphnia/parasitologia , Microsporídios não Classificados/fisiologia , Microsporidiose/transmissão , Esporos Fúngicos/fisiologia , Animais , Feminino , Genótipo , Interações Hospedeiro-Parasita , Microsporídios não Classificados/genética , Esporos Fúngicos/genética
7.
Dis Aquat Organ ; 129(1): 31-39, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29916390

RESUMO

Microsporidial spores were identified in the musculature of a loggerhead sea turtle Caretta caretta found dead on the shore in New Brunswick, Canada. Gastroenteritis was diagnosed on gross postmortem examination, with no gross abnormalities detected in the skeletal muscle. Histologically, the microsporidial spores were associated with inflammation and muscular necrosis and measured 1.1-1.7 × 2.2-3.4 µm. Spores were typically identified within sporophorous vesicles and, less often, in sporophorocysts and were weakly Gram positive, had punctate PAS staining, and were occasionally strongly acid-fast. Ultrastructural characteristics included 7-10 polar filament coils and other standard features of microsporidial spores. PCR for the microsporidial small subunit rRNA gene sequence was performed on DNA extracted from the muscle and small intestine, and the resulting amplicon was sequenced and queried against published microsporidial genomes. DNA sequences shared 98.2-99.8% sequence identity to Clade III of the Marinosporidia. This is the first report of a microsporidial infection contributing to the mortality of a sea turtle.


Assuntos
Microsporídios não Classificados/genética , Microsporídios não Classificados/ultraestrutura , Microsporidiose/veterinária , Filogenia , Tartarugas/microbiologia , Animais , DNA Fúngico/genética , Feminino , Microsporidiose/microbiologia , Músculo Esquelético/patologia , RNA Fúngico/genética , RNA Ribossômico/genética
8.
Parasitol Res ; 117(9): 2823-2829, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29931393

RESUMO

A microsporidium was found in a Mediterranean cricket Gryllus bimaculatus from a pet market in the UK and a lab stock at the Moscow Zoo (originating from London Zoo). The spores were ovoid, uninucleate, 6.3 × 3.7 µm in size (unfixed), in packets by of 8, 16, or 32. The spores were easily discharged upon dessication or slight mechanical pressure. The polar tube was isofilar, with 15-16 coils arranged in 1-2 rows. The polaroplast was composed of thin lamellae and occupied about one third of the spore volume. The endospore was 200 nm thick, thinning over the anchoring disc. The exospore was thin, uniform, and with no ornamentation. Phylogenetics based upon small subunit ribosomal RNA (Genbank accession # MG663123) and RNA polymerase II largest subunit (# MG664544) genes placed the parasite at the base of the Trachipleistophora/Vavraia lineage. The RPB1 locus was polymorphic but similar genetic structure and identical clones were found in both isolates, confirming their common geographic origin. Due to in insufficient ultrastructural data and prominent divergence from described species, the parasite is provisionally placed to the collective taxon Microsporidium.


Assuntos
Gryllidae/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/genética , Esporos Fúngicos/classificação , Animais , Londres , Filogenia , RNA Polimerase II/genética , Subunidades Ribossômicas Menores de Eucariotos/genética
9.
J Invertebr Pathol ; 143: 124-134, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27993617

RESUMO

Parahepatospora carcini n. gen. n. sp., is a novel microsporidian parasite discovered infecting the cytoplasm of epithelial cells of the hepatopancreas of a single Carcinus maenas specimen. The crab was sampled from within its invasive range in Atlantic Canada (Nova Scotia). Histopathology and transmission electron microscopy were used to show the development of the parasite within a simple interfacial membrane, culminating in the formation of unikaryotic spores with 5-6 turns of an isofilar polar filament. Formation of a multinucleate meront (>12 nuclei observed) preceded thickening and invagination of the plasmodial membrane, and in many cases, formation of spore extrusion precursors (polar filaments, anchoring disk) prior to complete separation of pre-sporoblasts from the sporogonial plasmodium. This developmental feature is intermediate between the Enterocytozoonidae (formation of spore extrusion precursors within the sporont plasmodium) and all other Microsporidia (formation of spore extrusion precursors after separation of sporont from the sporont plasmodium). SSU rRNA-based gene phylogenies place P. carcini within microsporidian Clade IV, between the Enterocytozoonidae and the so-called Enterocytospora-clade, which includes Enterocytospora artemiae and Globulispora mitoportans. Both of these groups contain gut-infecting microsporidians of aquatic invertebrates, fish and humans. According to morphological and phylogenetic characters, we propose that P. carcini occupies a basal position to the Enterocytozoonidae. We discuss the discovery of this parasite from a taxonomic perspective and consider its origins and presence within a high profile invasive host on the Atlantic Canadian coastline.


Assuntos
Braquiúros/parasitologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/genética , Animais , Microscopia Eletrônica de Transmissão , Microsporídios não Classificados/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase
10.
Parasitol Res ; 116(2): 773-780, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987055

RESUMO

This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host cell cytoplasm. Giemsa-stained mature spores are oval in shape and measured 3.40 ± 0.37 µm in length and 1.63 ± 0.20 µm in width. These uninucleate spores have an isofilar polar filament with 11 turns. The spore wall was trilaminar (75 to 115 nm) with a rugose, electron-dense exospore (34 to 45 nm) and a thickened, electron-lucent endospore (65 to 80 nm) overlaying the plasmalemma. Morphological, ultrastructural, and molecular features indicate that the described microsporidium is dissimilar to all known microsporidian taxa and confirm that it has different taxonomic characters than other microsporidia infecting X. luteola and is named here as Rugispora istanbulensis n. gen., n. sp.


Assuntos
Besouros/microbiologia , Microsporídios não Classificados/classificação , Animais , Microsporídios não Classificados/genética , Microsporídios não Classificados/isolamento & purificação , Microsporídios não Classificados/ultraestrutura , Filogenia , Folhas de Planta/parasitologia , Análise de Sequência de DNA , Esporos Fúngicos , Turquia , Ulmus/parasitologia
11.
J Invertebr Pathol ; 136: 81-91, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993808

RESUMO

Here we report on two microsporidia from freshwater crustaceans collected during the ongoing survey for microsporidia in the river Karasuk and adjacent waterbodies (Novosibirsk region, Western Siberia). The first species parasitized hypoderm and fat body of a cyclopid Cyclops sp. (Maxillopoda, Copedoda) and produced oval spores, measured 2.0×3.6µm (fixed) enclosed individually or in small groups in fragile sporophorous vesicles (SVs). We describe it here as Alfvenia sibirica sp. n. The second species infected the same tissues of a cladoceran Daphnia magna (Branchiopoda, Phyllopoda). Its spores were pyriform, 2.3×4.0µm (fixed), and resided in relatively persistent SVs in groups of 8-16. This species was identified as a Siberian isolate (Si) of Agglomerata cladocera (Pfeifer) because ultrastructurally it was hardly distinguishable from A. cladocera recorded from England from the same host (Larsson et al., 1996). A. cladocera (Si) shared 99% SSU rDNA sequence similarity to Binucleata daphniae from D. magna collected in Belgium (Refardt et al., 2008). The major outcome of our work is that we present molecular (SSUrDNA) characterization coupled with EM description, for representatives of two genera, Alfvenia (encompasses 3 described so far species) and Agglomerata (7 species), which allowed us to place these two genera on the phylogenetic tree. We also summarized the literature data on Alfvenia and Agglomerata spp., and provided their comparative morphological analysis. These two genera belong to so called "Aquatic outgroup" (Vossbrinck et al., 2004), a poorly resolved lineage, a sister to Amblyosporidae. This lineage probably includes majority of fresh water forms of microsporidia, most of which remain undescribed. SSUrDNA-based phylogenetic analysis and analysis of hosts suggest that diversification within the "Aquatic outgroup" could have been connected with the host switch from dipterans or copepods to cladocerans that had occurred in some ancestral Amblyospora-related lineage(s).


Assuntos
Daphnia/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/genética , Animais , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sibéria
12.
J Invertebr Pathol ; 135: 43-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26853837

RESUMO

The microsporidian parasite Globulispora mitoportans, n. g., n. sp., infects the intestinal epithelium of two species of daphnids (Crustacea: Cladocera). Mature spores are thin-walled and possess a novel type of polaroplast with a conspicuous part consisting of globules that occupies a large part of the spore volume. Both developmental stages and the spores possess large, electron-lucent vesicles enveloped by a double membrane and filled with an internal web of filamentous material, corresponding structurally to microsporidian mitosomes. The SSU rRNA phylogeny places Globulispora into a specific "Enterocytospora-like" clade, part of a large "non-enterocytozoonidae" clade, grouping a heterogenous assemblage of microsporidia infecting almost exclusively insects and crustacea.


Assuntos
Daphnia/parasitologia , Microsporídios não Classificados/classificação , Animais , Núcleo Celular/ultraestrutura , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , Funções Verossimilhança , Microscopia Eletrônica de Transmissão , Microsporídios não Classificados/genética , Microsporídios não Classificados/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Esporos Fúngicos/ultraestrutura
13.
J Invertebr Pathol ; 136: 57-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26925527

RESUMO

This paper described a novel microsporidian infection in the pond-reared oriental river prawn Macrobrachium nipponense. A conspicuous symptom of the infection was progressive white opacity associated with the musculature. Although neither bacteria nor viruses were detected in routine diagnostic tests, apparently degenerated microsporidian cells or spores were frequently observed in wet smears of the musculature from diseased prawns. Histological observations also revealed characteristics typical of microsporidian infection throughout the host. Transmission electron microscopy revealed multiple life stages of a microsporidian parasite within the cytoplasm of host muscle cells. In addition, partial small subunit ribosomal RNA (SSU rRNA) gene was obtained by a nested PCR using microsporidian specific primers. A consensus sequence was then deposited in GenBank (accession no. KU307278) and subjected to a general BLASTn search that yielded hits only for microsporidian sequence records. Phylogenetic analysis showed that the isolate was most similar to the fish microsporidian clade containing the genera Kabatana, Microgemma, Potaspora, Spraguea, and Teramicra. The highest sequence identity, 87%, was with Potaspora spp. Based on histological, ultrastructure and molecular phylogenetic data, we erected a new species, Potaspora macrobrachium for the novel microsporidium. The description of microsporidium in this important commercial host was fundamental for future consideration of factors affecting stock health and sustainability.


Assuntos
Microsporídios não Classificados/classificação , Microsporídios não Classificados/genética , Microsporidiose/microbiologia , Palaemonidae/microbiologia , Animais , China , Perfilação da Expressão Gênica , Microscopia Eletrônica de Transmissão , Microsporidiose/patologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Transcriptoma
14.
Parasitol Res ; 115(8): 3003-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27075306

RESUMO

Microsporidia are widespread endoparasites of animals, including humans. They are characterized by highly modified morphological and genetic features that cause difficulties in elucidating their enigmatic origin and evolution. Recent advances, however, indicate that the Microsporidia have emerged from the Rozellomycota, forming together either the most basal lineage of the Fungi or its closer relative. The Rozellomycota comprise a huge diversity of uncultured environmental clones, with a very few known species endoparasitic of algae and water moulds, like the chytrid-like Rozella, and of free-living amoebae, like Nucleophaga and the microsporidia-like Paramicrosporidium. A possible ancestral microsporidium, Mitosporidium, has recently been described from the water flea Daphnia, since the phylogenomic reconstruction showed that it branches to the root of the microsporidian tree, while the genome analysis revealed a fungal-like nuclear genome and the persistence of a mitochondrial genome. Here we report the 18S rDNA molecular phylogeny of an additional microsporidium-like endoparasite of amoebae, which has a developmental cycle almost identical to that of Nucleophaga amoebae. Our results show that the endoparasite is closely related to N. amoebae, forming a distinct species, for which we propose the name Nucleophaga terricolae. Furthermore, the Nucleophaga lineage is recovered as sister to the Microsporidia while Mitosporidium turns out to be member of a well-supported group of environmental clones. These results raise the question about the actual ancestry of the Microsporidia within the Rozellomycota. A precise and robust phylogeny will require further comparative genomic studies of these various strains, and should also consider the primitive microsporidia, for which genetic data are still lacking, because all these organisms are essentially morphologically similar.


Assuntos
Amoeba/microbiologia , Evolução Biológica , Daphnia/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/genética , Animais , DNA Ribossômico/genética , Evolução Molecular , Genômica , Filogenia , RNA Ribossômico 18S/genética
15.
J Eukaryot Microbiol ; 62(1): 60-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25105446

RESUMO

The Microsporidium, Anncaliia algerae, an obligate intracellular parasite, has been identified as an opportunistic human pathogen, but treatment has not been evaluated for infections with this organism. Albendazole, an antitubulin polymerization drug used against parasitic worm infections, has been the medication of choice used to treat some microsporidial infections affecting humans, with varying results ranging from clearing infection (Encephalitozoon) to resistance (Enterocytozoon). This study illustrates the effect of albendazole treatment on A. algerae infection in Rabbit Kidney (RK13) cells and Human Fetal Lung (HFL-1) fibroblasts. Albendazole appears to have an attenuating effect on A. algerae infection and albendazole's IC50 in RK13 cells is 0.1 µg/ml. Long-term treatment inhibits up to 98% of spore production, but interrupting treatment reestablishes the infection without new exposure to the parasite as supported by microscopic observations. The parasite's beta-tubulin gene was purified, cloned, and sequenced. Five of the six specific amino acids, associated with benzimidazole sensitivity, are conserved in A. algerae. These findings suggest that A. algerae is sensitive to albendazole; however, the organism is not completely cleared from cultures.


Assuntos
Proteínas Fúngicas/genética , Microsporídios não Classificados/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/genética , Albendazol/farmacologia , Sequência de Aminoácidos , Animais , Benzimidazóis/farmacologia , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Rim , Pulmão , Testes de Sensibilidade Microbiana , Microsporídios não Classificados/genética , Microsporídios não Classificados/metabolismo , Microsporídios não Classificados/ultraestrutura , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/ultraestrutura , Tubulina (Proteína)/metabolismo
16.
J Invertebr Pathol ; 124: 23-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450951

RESUMO

The historic genus Pleistophora (Plistophora) is a highly polyphyletic clade with invertebrate Microsporidia reassigned to several new genera since the 1980s. Two genera, Endoreticulatus and Cystosporogenes, clearly separate into distinct but closely related clades based on small subunit ribosomal RNA analysis but are included in different families that are each polyphyletic. A microsporidium with morphology resembling the Endoreticulatus/Cystosporogenes clade was isolated from the grasshopper Poecilimon thoracicus from a site in Northwest Bulgaria. It produced intense infections in the digestive tract of the host but no behavioral changes were noted in infected individuals. Prevalence of the microsporidium increased over the active feeding season yearly. Mature spores were oval and measured 2.58±0.21 µm×1.34±0.24 µm, with 16 to approximately 32 spores in a parasitophorous vacuole. The spores were uninucleate and polar filament coils numbered 8-9 situated in a single row. The spore polaroplast consisted of an anterior lamellar section and a posterior vesicular section, and the posterior vacuole was reduced. Analyses of a 1221 bp partial SSU-rRNA sequence indicated that the isolate is more closely related to the Endoreticulatus clade than to Cystosporogenes, but shows earlier phylogenetic separation from species infecting Lepidoptera and represents a new species, Endoreticulatus poecilimonae. To compare sequences of Endoreticulatus spp. from Lepidoptera to those infecting other insect orders, an isolate, Microsporidium itiitiMalone (1985), described from the Argentine stem weevil, Listronotus bonariensis, was sequenced. Like the grasshopper isolate, the weevil isolate is closely related but basal to the lepidopteran Endoreticulatus clade. The original description combined with the new sequence data confirms species status and permits transfer of the isolate from Microsporidium, a genus erected for microsporidian species of uncertain taxonomic status, to Endoreticulatus.


Assuntos
Gafanhotos/microbiologia , Microsporídios não Classificados/classificação , Filogenia , Animais , Sequência de Bases , Microsporídios não Classificados/citologia , Microsporídios não Classificados/genética , Dados de Sequência Molecular , Especificidade da Espécie
17.
Parasitol Res ; 114(7): 2435-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25813455

RESUMO

Morphological and molecular procedures were used to describe a new species of microsporidian that infects the muscles of the sub-opercular region and the caudal fins of the freshwater Aequidens plagiozonatus in Brazil. This microsporidian forms whitish xenomas containing variable number of spores, reaching up to ~0.4 mm in diameter. The mature spores, pyriformin shape, with slightly round ends, measured 3.4 ± 0.5 µm long and 1.9 ± 0.3 µm wide (n = 50) and showed characteristics typical of Microsporidia. The average thickness of the spore wall was 100 (96-108) nm (n = 50), and the spore wall was composed of two layers, a thin, electron-dense exospore and a thick electron-transparent endospore. The exospore was surrounded by a thin, irregular layer of granular material. The anchoring disc was mushroom-like, located in the apical region of the spore in an eccentric position relative to the spore axis, rendering bilateral asymmetry to the spore. The anterior part of the polar filament (PF) (manubrium) measured approximately 125 (122-128) nm thick (n = 30), and the angle of tilt between the anterior PF and the spore axis was ~45°; the posterior part was packed in 8-9 coils. Phylogenetic analysis showed a strongly supported clade containing family Spragueidae Weissenberg, 1976, family Tetramicridae Matthews and Matthews, 1980, Microsporidium sp. RBS1, and Kabatana spp. In conclusion, the available morphological, ultrastructural, and molecular data shows that this microsporidian is a new species belonging to group 4, classified as Potaspora aequidens n. sp. This is the second species described in the genus Potaspora.


Assuntos
Ciclídeos/parasitologia , Doenças dos Peixes/parasitologia , Microsporídios/isolamento & purificação , Microsporidiose/veterinária , Animais , Brasil , Água Doce/parasitologia , Microsporídios/classificação , Microsporídios/genética , Microsporídios/fisiologia , Microsporídios não Classificados/genética , Microsporidiose/parasitologia , Dados de Sequência Molecular , Filogenia
18.
mBio ; 15(6): e0058224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38651867

RESUMO

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.


Assuntos
Daphnia , Especificidade de Hospedeiro , Filogenia , Simbiose , Animais , Daphnia/microbiologia , Virulência , Microsporídios/genética , Microsporídios/patogenicidade , Microsporídios/fisiologia , Microsporídios/classificação , Microsporídios não Classificados/genética , Microsporídios não Classificados/patogenicidade , Microsporídios não Classificados/classificação , Microsporídios não Classificados/fisiologia
19.
Parasitol Res ; 112(11): 3905-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23990046

RESUMO

A new species of Microsporidia found in the marine teleost Sparus aurata collected from Hurghada coasts along the Red Sea, Egypt was described based on light and ultrastructural studies. Twenty three (30.6%) out of 75 of the examined fish were parasitized with a microsporidian parasite. Numerous macroscopic whitish cysts embedded in the peritoneal cavity were observed to infect many organs of the body including muscles, connective tissues, and the intestinal epithelium. The infection was developed as tumor-like masses of often up to 5 mm in diameter inducing an enormous hypertrophy to the infected organs. Fresh spores appeared mostly ovoid to pyriform in shape reaching a size of 1.7 ± 0.5 (1.5-2.5) µm × 1.3 ± 0.4 (1-2) µm; they possessed a large vacuole at the posterior end. These spores were located within a sporophorous vesicle which was bound by a thick amorphous wall. The ultrastructural features support the placement of the present species within the genus Microsporidium. The developmental stages were enclosed within a xenoma structure that was bounded by a double-layered cyst wall. The life cycle of the microsporidian pathogen described herein included four stages: proliferation (merogony), sporogony, sporoblast, spores, and liberation. Mature spores appeared electron dense, uninucleate, and were ellipsoidal in shape. At the anterior end of the spore, the anchoring disk was found in a central position. There was a definite number (5-11) of turns of the polar tube. A 538-bp region of the SSU rDNA gene of the studied species was sequenced (GenBank accession number: KF0220444). Multiple sequence alignment calculated a high degree of similarity (>92%) with six microsporidian species. The most closely related sequence was provided by the GenBank entry AF151529 for Microsporidium prosopium isolated from Hyperoplus lanceolatus differing in 67 nucleotide positions in its SSU rDNA with the highest percentage of identity (97.2%) and the lowest divergence value (0.20). Variations in the morphology of the spores and developmental stages between the two species revealed that the two species are different. The site of infection in the host and description of the onset of parasite development are strong criteria for the placement of the microsporidian parasite of the fish S. aurata within the genus Microsporidium as a new species, and we propose to name it Microsporidium aurata nov. sp.


Assuntos
Doenças dos Peixes/parasitologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/isolamento & purificação , Microsporidiose/veterinária , Dourada/parasitologia , Estruturas Animais/patologia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Egito , Doenças dos Peixes/patologia , Genes de RNAr , Oceano Índico , Microsporídios não Classificados/citologia , Microsporídios não Classificados/genética , Microsporidiose/parasitologia , Microsporidiose/patologia , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Esporos de Protozoários/citologia , Esporos de Protozoários/ultraestrutura
20.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37565496

RESUMO

Microsporidia are intracellular parasitic fungi whose genomes rank among the smallest of all known eukaryotes. A number of outstanding questions remain concerning the evolution of their large-scale variation in genome architecture, responsible for genome size variation of more than an order of magnitude. This genome report presents the first near-chromosomal assembly of a large-genome microsporidium, Hamiltosporidium tvaerminnensis. Combined Oxford Nanopore, Pacific Biosciences (PacBio), and Illumina sequencing led to a genome assembly of 17 contigs, 11 of which represent complete chromosomes. Our assembly is 21.64 Mb in length, has an N50 of 1.44 Mb, and consists of 39.56% interspersed repeats. We introduce a novel approach in microsporidia, PacBio Iso-Seq, as part of a larger annotation pipeline for obtaining high-quality annotations of 3,573 protein-coding genes. Based on direct evidence from the full-length Iso-Seq transcripts, we present evidence for alternative polyadenylation and variation in splicing efficiency, which are potential regulation mechanisms for gene expression in microsporidia. The generated high-quality genome assembly is a necessary resource for comparative genomics that will help elucidate the evolution of genome architecture in response to intracellular parasitism.


Assuntos
Microsporídios não Classificados , Microsporídios , Microsporídios não Classificados/genética , Cromossomos , Microsporídios/genética , Genômica , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA