Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33563754

RESUMO

COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Expiração/fisiologia , Obesidade/fisiopatologia , Aerossóis , Fatores Etários , Animais , Índice de Massa Corporal , COVID-19/epidemiologia , COVID-19/virologia , Estudos de Coortes , Humanos , Muco/química , Muco/virologia , Obesidade/epidemiologia , Obesidade/virologia , Tamanho da Partícula , Primatas , Sistema Respiratório/metabolismo , SARS-CoV-2/isolamento & purificação , Carga Viral
2.
PLoS Pathog ; 16(1): e1008236, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971984

RESUMO

Bacterial vaginosis (BV), a condition in which the vaginal microbiota consists of community of obligate and facultative anaerobes rather than dominated by a single species of Lactobacillus, affects ~30% of women in the US. Women with BV are at 60% increased risk for HIV acquisition and are 3-times more likely to transmit HIV to an uninfected partner. As cervicovaginal mucus (CVM) is the first line of defense against mucosal pathogens and the home of the resident vaginal microbiota, we hypothesized the barrier function of CVM to HIV may be diminished in BV. Here, we characterized CVM properties including pH, lactic acid content, and Nugent score to correlate with the microbiota community composition, which was confirmed by 16S rDNA sequencing on a subset of samples. We then quantified the mobility of fluorescently-labeled HIV virions and nanoparticles to characterize the structural and adhesive barrier properties of CVM. Our analyses included women with Nugent scores categorized as intermediate (4-6) and BV (7-10), women that were either symptomatic or asymptomatic, and a small group of women before and after antibiotic treatment for symptomatic BV. Overall, we found that HIV virions had significantly increased mobility in CVM from women with BV compared to CVM from women with Lactobacillus crispatus-dominant microbiota, regardless of whether symptoms were present. We confirmed using nanoparticles and scanning electron microscopy that the impaired barrier function was due to reduced adhesive barrier properties without an obvious degradation of the physical CVM pore structure. We further confirmed a similar increase in HIV mobility in CVM from women with Lactobacillus iners-dominant microbiota, the species most associated with transitions to BV and that persists after antibiotic treatment for BV. Our findings advance the understanding of the protective role of mucus and highlight the interplay between vaginal microbiota and the innate barrier function mucus.


Assuntos
Colo do Útero/microbiologia , Colo do Útero/virologia , Infecções por HIV/virologia , Vagina/microbiologia , Vagina/virologia , Vaginose Bacteriana/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , HIV-1/fisiologia , Humanos , Microbiota , Pessoa de Meia-Idade , Muco/microbiologia , Muco/virologia , Adulto Jovem
3.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946994

RESUMO

The gastrointestinal lumen is a rich source of eukaryotic and prokaryotic viruses which, together with bacteria, fungi and other microorganisms comprise the gut microbiota. Pathogenic viruses inhabiting this niche have the potential to induce local as well as systemic complications; among them, the viral ability to disrupt the mucosal barrier is one mechanism associated with the promotion of diarrhea and tissue invasion. This review gathers recent evidence showing the contributing effects of diet, gut microbiota and the enteric nervous system to either support or impair the mucosal barrier in the context of viral attack.


Assuntos
Bacteriófagos/fisiologia , Dieta , Sistema Nervoso Entérico/fisiologia , Mucosa Gástrica/virologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/fisiologia , Mucosa Intestinal/virologia , Vírus , Defensinas/fisiologia , Digestão , Suscetibilidade a Doenças , Sistema Nervoso Entérico/virologia , Alimentos/virologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/inervação , Mucosa Gástrica/metabolismo , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Desnutrição/virologia , Muco/metabolismo , Muco/virologia , Neurônios/virologia , Infecções Oportunistas/virologia , Vírus de Plantas , Viroses/microbiologia , Viroses/fisiopatologia
4.
Emerg Infect Dis ; 26(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511089

RESUMO

We found that environmental conditions affect the stability of severe acute respiratory syndrome coronavirus 2 in nasal mucus and sputum. The virus is more stable at low-temperature and low-humidity conditions, whereas warmer temperature and higher humidity shortened half-life. Although infectious virus was undetectable after 48 hours, viral RNA remained detectable for 7 days.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Muco/virologia , Pneumonia Viral/virologia , RNA Viral/análise , Escarro/virologia , COVID-19 , Temperatura Alta , Humanos , Umidade , Cavidade Nasal/virologia , Pandemias , Estabilidade de RNA , SARS-CoV-2
5.
Soft Matter ; 16(36): 8310-8324, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32909024

RESUMO

Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Desinfecção , Humanos , Muco/virologia , Nanopartículas/química , Pandemias , Equipamento de Proteção Individual , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Propriedades de Superfície
6.
Bull Math Biol ; 81(10): 4069-4099, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468263

RESUMO

Antibodies have been shown to hinder the movement of herpes simplex virus virions in cervicovaginal mucus, as well as other viruses in other mucus secretions. However, it has not been possible to directly observe the mechanisms underlying this phenomenon, so the nature of virion-antibody-mucin interactions remain poorly understood. In this work, we analyzed thousands of virion traces from single particle tracking experiments to explicate how antibodies must cooperate to immobilize virions for relatively long time periods. First, using a clustering analysis, we observed a clear separation between two classes of virion behavior: freely diffusing and immobilized. While the proportion of freely diffusing virions decreased with antibody concentration, the magnitude of their diffusivity did not, implying an all-or-nothing dichotomy in the pathwise effect of the antibodies. Proceeding under the assumption that all binding events are reversible, we used a novel switch-point detection method to conclude that there are very few, if any, state switches on the experimental timescale of 20 s. To understand this slow state switching, we analyzed a recently proposed continuous-time Markov chain model for binding kinetics and virion movement. Model analysis implied that virion immobilization requires cooperation by multiple antibodies that are simultaneously bound to the virion and mucin matrix and that there is an entanglement phenomenon that accelerates antibody-mucin binding when a virion is immobilized. In addition to developing a widely applicable framework for analyzing multistate particle behavior, this work substantially enhances our mechanistic understanding of how antibodies can reinforce a mucus barrier against passive invasive species.


Assuntos
Modelos Imunológicos , Muco/imunologia , Muco/virologia , Vírion/imunologia , Anticorpos Antivirais/metabolismo , Muco do Colo Uterino/imunologia , Muco do Colo Uterino/virologia , Difusão , Feminino , Humanos , Imunidade nas Mucosas , Imunoglobulina G/metabolismo , Técnicas In Vitro , Cinética , Modelos Lineares , Cadeias de Markov , Conceitos Matemáticos , Simplexvirus/imunologia , Simplexvirus/patogenicidade , Vírion/patogenicidade
7.
Proc Natl Acad Sci U S A ; 112(44): 13675-80, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483471

RESUMO

Bacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro. On this basis, we proposed our bacteriophage adherence to mucus (BAM) model of immunity. Here, to test this model, we developed a microfluidic device (chip) that emulates a mucosal surface experiencing constant fluid flow and mucin secretion dynamics. Using mucus-producing human cells and Escherichia coli in the chip, we observed similar accumulation and persistence of mucus-adherent T4 phage and nonadherent T4∆hoc phage in the mucus. Nevertheless, T4 phage reduced bacterial colonization of the epithelium >4,000-fold compared with T4∆hoc phage. This suggests that phage adherence to mucus increases encounters with bacterial hosts by some other mechanism. Phages are traditionally thought to be completely dependent on normal diffusion, driven by random Brownian motion, for host contact. We demonstrated that T4 phage particles displayed subdiffusive motion in mucus, whereas T4∆hoc particles displayed normal diffusion. Experiments and modeling indicate that subdiffusive motion increases phage-host encounters when bacterial concentration is low. By concentrating phages in an optimal mucus zone, subdiffusion increases their host encounters and antimicrobial action. Our revised BAM model proposes that the fundamental mechanism of mucosal immunity is subdiffusion resulting from adherence to mucus. These findings suggest intriguing possibilities for engineering phages to manipulate and personalize the mucosal microbiome.


Assuntos
Bacteriófago T4/fisiologia , Escherichia coli/virologia , Movimento (Física) , Muco/virologia
8.
J Virol ; 89(11): 5935-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810540

RESUMO

UNLABELLED: A balance between the functions of the influenza virus surface proteins hemagglutinin (HA) and neuraminidase (NA) is thought to be important for the transmission of viruses between humans. Here we describe two pandemic H1N1 viruses, A/swine/Virginia/1814-1/2012 and A/swine/Virginia/1814-2/2012 (pH1N1low-1 and -2, respectively), that were isolated from swine symptomatic for influenza. The enzymatic activity of the NA of these viruses was almost undetectable, while the HA binding affinity for α2,6 sialic acids was greater than that of the highly homologous pH1N1 viruses A/swine/Pennsylvania/2436/2012 and A/swine/Minnesota/2499/2012 (pH1N1-1 and -2), which exhibited better-balanced HA and NA activities. The in vitro growth kinetics of pH1N1low and pH1N1 viruses were similar, but aerosol transmission of pH1N1low-1 was abrogated and transmission via direct contact in ferrets was significantly impaired compared to pH1N1-1, which transmitted by direct and aerosol contact. In normal human bronchial epithelial cells, pH1N1low-1 was significantly inhibited by mucus but pH1N1-1 was not. In Madin-Darby canine kidney cell cultures overlaid with human or swine mucus, human mucus inhibited pH1N1low-1 but swine mucus did not. These data show that the interaction between viruses and mucus may be an important factor in viral transmissibility and could be a barrier for interspecies transmission between humans and swine for influenza viruses. IMPORTANCE: A balance between the functions of the influenza virus surface proteins hemagglutinin (HA) and neuraminidase (NA) is thought to be important for transmission of viruses from swine to humans. Here we show that a swine virus with extremely functionally mismatched HA and NAs (pH1N1low-1) cannot transmit via aerosol in ferrets, while another highly homologous virus with HA and NAs that are better matched functionally (pH1N1-1) can transmit via aerosol. These viruses show similar growth kinetics in Madin-Darby canine kidney (MDCK) cells, but pH1N1low-1 is significantly inhibited by mucus in normal human bronchial epithelial cells whereas pH1N1-1 is not. Further, human mucus could inhibit these viruses, but swine mucus could not. These data show that the interaction between viruses and mucus may be an important factor in viral transmissibility and could be a species barrier between humans and swine for influenza viruses.


Assuntos
Aerossóis , Vírus da Influenza A Subtipo H1N1/enzimologia , Viabilidade Microbiana , Muco/virologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Cães , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
9.
Proc Natl Acad Sci U S A ; 110(26): 10771-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23690590

RESUMO

Mucosal surfaces are a main entry point for pathogens and the principal sites of defense against infection. Both bacteria and phage are associated with this mucus. Here we show that phage-to-bacteria ratios were increased, relative to the adjacent environment, on all mucosal surfaces sampled, ranging from cnidarians to humans. In vitro studies of tissue culture cells with and without surface mucus demonstrated that this increase in phage abundance is mucus dependent and protects the underlying epithelium from bacterial infection. Enrichment of phage in mucus occurs via binding interactions between mucin glycoproteins and Ig-like protein domains exposed on phage capsids. In particular, phage Ig-like domains bind variable glycan residues that coat the mucin glycoprotein component of mucus. Metagenomic analysis found these Ig-like proteins present in the phages sampled from many environments, particularly from locations adjacent to mucosal surfaces. Based on these observations, we present the bacteriophage adherence to mucus model that provides a ubiquitous, but non-host-derived, immunity applicable to mucosal surfaces. The model suggests that metazoan mucosal surfaces and phage coevolve to maintain phage adherence. This benefits the metazoan host by limiting mucosal bacteria, and benefits the phage through more frequent interactions with bacterial hosts. The relationships shown here suggest a symbiotic relationship between phage and metazoan hosts that provides a previously unrecognized antimicrobial defense that actively protects mucosal surfaces.


Assuntos
Bacteriófagos/imunologia , Bacteriófagos/fisiologia , Muco/imunologia , Muco/virologia , Adesividade , Animais , Aderência Bacteriana/imunologia , Bacteriófago T4/genética , Bacteriófago T4/imunologia , Bacteriófago T4/fisiologia , Bacteriófagos/genética , Linhagem Celular , Escherichia coli/imunologia , Escherichia coli/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Modelos Imunológicos , Muco/microbiologia , Simbiose/imunologia
10.
Biophys J ; 109(1): 164-72, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26153713

RESUMO

Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data.


Assuntos
HIV/metabolismo , Muco/metabolismo , Muco/virologia , Nanopartículas/metabolismo , Vírion/metabolismo , Colo do Útero/metabolismo , Colo do Útero/virologia , Coito/fisiologia , Simulação por Computador , Difusão , Epitélio/metabolismo , Epitélio/virologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Sêmen/metabolismo , Sêmen/virologia , Fatores de Tempo , Vagina/metabolismo , Vagina/virologia
11.
Appl Environ Microbiol ; 81(17): 5773-83, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092456

RESUMO

There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms.


Assuntos
Antozoários/virologia , Fenômenos Fisiológicos Virais , Animais , Antozoários/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Muco/virologia , Estações do Ano , Vietnã , Vírus/genética , Vírus/isolamento & purificação
12.
Biologicals ; 43(1): 31-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466699

RESUMO

Heparin is one of the main pharmaceutical products manufactured from raw animal material. In order to describe the viral burden associated with this raw material, we performed high-throughput sequencing (HTS) on mucus samples destined for heparin manufacturing, which were collected from European pigs. We identified Circoviridae and Parvoviridae members as the most prevalent contaminating viruses, together with viruses from the Picornaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Birnaviridae, and Anelloviridae families. Putative new viral species were also identified. The load of several known or novel small non-enveloped viruses, which are particularly difficult to inactivate or eliminate during heparin processing, was quantified by qPCR. Analysis of the combined HTS and specific qPCR results will influence the refining and validation of inactivation procedures, as well as aiding in risk analysis of viral heparin contamination.


Assuntos
Heparina/biossíntese , Ensaios de Triagem em Larga Escala/métodos , Intestinos/virologia , Muco/virologia , Vírus/classificação , Animais , Sequência de Bases , Primers do DNA , Reação em Cadeia da Polimerase em Tempo Real , Suínos
13.
J Fish Dis ; 38(3): 303-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24547985

RESUMO

Koi herpesvirus (KHV) causes an economically important, highly infectious disease in common carp and koi, Cyprinus carpio L. Since the occurrence of mass mortalities worldwide, highly specific and sensitive molecular diagnostic methods have been developed for KHV detection. The sensitivity and reliability of these assays have essentially focused at the detection of low viral DNA copy numbers during latent or persistent infections. However, the efficacy of these assays has not been investigated with regard to low-level viraemia during acute infection stages. This study was conducted to compare the sensitivity of seven different polymerase chain reaction (PCR) assays to detect KHV during the first hours and days post-infection (hpi; dpi), using lethal and non-lethal sampling methods. The results highlight the limitations of the assays for detecting virus during the first 4 dpi despite rapid mortality in experimentally infected carp. False-negative results were associated with time post-infection and the tissue sampled. Non-lethal sampling appears effective for KHV screening, with efficient detection in mucus samples obtained from external swabs during this early infection period (<5 dpi), while biopsies from gills and kidney were negative using the same PCR assays. Non-lethal sampling may improve the reliability of KHV detection in subclinical, acutely infected carp.


Assuntos
Carpas , Doenças dos Peixes/diagnóstico , Infecções por Herpesviridae/veterinária , Reação em Cadeia da Polimerase/veterinária , Animais , Brânquias/virologia , Herpesviridae/genética , Rim/virologia , Muco/virologia , Reação em Cadeia da Polimerase/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Fish Dis ; 38(5): 477-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24925228

RESUMO

Koi herpesvirus (KHV) causes a highly infectious disease afflicting common carp and koi, Cyprinus carpio L. Various molecular and antibody-based detection methods have been used to elucidate the rapid attachment and dissemination of the virus throughout carp tissues, facilitating ongoing development of effective diagnostic approaches. In situ hybridization (ISH) was used here to determine the target tissues of KHV during very early infection, after infecting carp with a highly virulent KHV isolate. Analysis of paraffin-embedded tissues (i.e. gills, skin, spleen, kidney, gut, liver and brain) during the first 8 h and following 10 days post-infection (hpi; dpi) revealed positive signals in skin mucus, gills and gut sections after only 1 hpi. Respiratory epithelial cells were positive as early as 2 hpi. Viral DNA was also detected within blood vessels of various tissues early in the infection. Notable increases in signal abundance were observed in the gills and kidney between 5 and 10 dpi, and viral DNA was detected in all tissues except brain. This study suggests that the gills and gut play an important role in the early pathogenesis of this Alloherpesvirus, in addition to skin, and demonstrates ISH as a useful diagnostic tool for confirmation of acutely infected carp.


Assuntos
Doenças dos Peixes/diagnóstico , Doenças dos Peixes/patologia , Infecções por Herpesviridae/veterinária , Animais , Carpas , DNA Viral/análise , Células Epiteliais/patologia , Células Epiteliais/virologia , Doenças dos Peixes/virologia , Brânquias/patologia , Brânquias/virologia , Herpesviridae , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Hibridização In Situ , Intestinos/virologia , Muco/virologia
15.
Biophys J ; 106(9): 2028-36, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806935

RESUMO

Given the difficulty in finding a cure for HIV/AIDS, a promising prevention strategy to reduce HIV transmission is to directly block infection at the portal of entry. The recent Thai RV144 trial offered the first evidence that an antibody-based vaccine may block heterosexual HIV transmission. Unfortunately, the underlying mechanism(s) for protection remain unclear. Here we theoretically examine a hypothesis that builds on our recent laboratory observation: virus-specific antibodies (Ab) can trap individual virions in cervicovaginal mucus (CVM), thereby reducing infection in vivo. Ab are known to have a weak-previously considered inconsequential-binding affinity with the mucin fibers that constitute CVM. However, multiple Ab can bind to the same virion at the same time, which markedly increases the overall Ab-mucin binding avidity, and creates an inheritable virion-mucin affinity. Our model takes into account biologically relevant length and timescales, while incorporating known HIV-Ab affinity and the respective diffusivities of viruses and Ab in semen and CVM. The model predicts that HIV-specific Ab in CVM leads to rapid formation and persistence of an HIV concentration front near the semen/CVM interface, far from the vaginal epithelium. Such an HIV concentration front minimizes the flux of HIV virions reaching target cells, and maximizes their elimination upon drainage of genital secretions. The robustness of the result implies that even exceedingly weak Ab-mucin affinity can markedly reduce the flux of virions reaching target cells. Beyond this specific application, the model developed here is adaptable to other pathogens, mucosal barriers, and geometries, as well as kinetic and diffusional effects, providing a tool for hypothesis testing and producing quantitative insights into the dynamics of immune-mediated protection.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , HIV-1/fisiologia , Mucinas/metabolismo , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Colo do Útero/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Cinética , Muco/virologia , Ligação Proteica , Vagina/virologia
16.
J Virol ; 87(14): 7864-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658443

RESUMO

Influenza viruses pose a major public health burden to communities around the world by causing respiratory infections that can be highly contagious and spread rapidly through the population. Despite extensive research on influenza viruses, the modes of transmission occurring most often among humans are not entirely clear. Contributing to this knowledge gap is the lack of an understanding of the levels of infectious virus present in respirable aerosols exhaled from infected hosts. Here, we used the ferret model to evaluate aerosol shedding patterns and measure the amount of infectious virus present in exhaled respirable aerosols. By comparing these parameters among a panel of human and avian influenza viruses exhibiting diverse respiratory droplet transmission efficiencies, we are able to report that ferrets infected by highly transmissible influenza viruses exhale a greater number of aerosol particles and more infectious virus within respirable aerosols than ferrets infected by influenza viruses that do not readily transmit. Our findings improve our understanding of the ferret transmission model and provide support for the potential for influenza virus aerosol transmission.


Assuntos
Vírus da Influenza A/patogenicidade , Muco/virologia , Infecções por Orthomyxoviridae/transmissão , Sistema Respiratório/virologia , Eliminação de Partículas Virais/fisiologia , Animais , Furões , Vírus da Influenza A/genética , Muco/química , Tamanho da Partícula , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espirro/fisiologia , Especificidade da Espécie , Estatísticas não Paramétricas
17.
Vet Res ; 45: 100, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281322

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp (Cyprinus carpio). The present study investigated the ability of CyHV-3 to infect common carp during the early stages of its development (from embryos to fingerlings) after inoculation by immersion in water containing the virus. Fish were inoculated at different times after hatching with a pathogenic recombinant CyHV-3 strain expressing luciferase. The sensitivity and permissivity of carp to CyHV-3 were investigated using in vivo bioluminescence imaging. The susceptibility of carp to CyHV-3 disease was investigated by measuring the survival rate. Carp were sensitive and permissive to CyHV-3 infection and susceptible to CyHV-3 disease at all stages of development, but the sensitivity of the two early developmental stages (embryo and larval stages) was limited compared to later stages. The lower sensitivity observed for the early developmental stages was due to stronger inhibition of viral entry into the host by epidermal mucus. In addition, independent of the developmental stage at which inoculation was performed, the localization of light emission suggested that the skin is the portal of CyHV-3 entry. Taken together, the results of the present study demonstrate that carp are sensitive and permissive to CyHV-3 at all stages of development and confirm that the skin is the major portal of entry after inoculation by immersion in infectious water. The results also stress the role of epidermal mucus as an innate immune barrier against pathogens even and especially at the early stages of development.


Assuntos
Carpas/imunologia , Carpas/virologia , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Epiderme/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Animais , Carpas/crescimento & desenvolvimento , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Epiderme/virologia , Doenças dos Peixes/virologia , Muco/imunologia , Muco/virologia
18.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38713593

RESUMO

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Vagina , Humanos , Feminino , Ebolavirus/fisiologia , Vagina/virologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/transmissão , Vírion , Imunoglobulina G , Adulto , Muco do Colo Uterino/virologia , Muco/virologia
19.
Nat Commun ; 15(1): 4764, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834561

RESUMO

Bacteriophage are sophisticated cellular parasites that can not only parasitize bacteria but are increasingly recognized for their direct interactions with mammalian hosts. Phage adherence to mucus is known to mediate enhanced antimicrobial effects in vitro. However, little is known about the therapeutic efficacy of mucus-adherent phages in vivo. Here, using a combination of in vitro gastrointestinal cell lines, a gut-on-a-chip microfluidic model, and an in vivo murine gut model, we demonstrated that a E. coli phage, øPNJ-6, provided enhanced gastrointestinal persistence and antimicrobial effects. øPNJ-6 bound fucose residues, of the gut secreted glycoprotein MUC2, through domain 1 of its Hoc protein, which led to increased intestinal mucus production that was suggestive of a positive feedback loop mediated by the mucus-adherent phage. These findings extend the Bacteriophage Adherence to Mucus model into phage therapy, demonstrating that øPNJ-6 displays enhanced persistence within the murine gut, leading to targeted depletion of intestinal pathogenic bacteria.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Mucosa Intestinal , Mucina-2 , Animais , Escherichia coli/virologia , Camundongos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Mucina-2/metabolismo , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Terapia por Fagos/métodos , Aderência Bacteriana , Feminino , Muco/metabolismo , Muco/virologia , Colífagos/fisiologia , Fucose/metabolismo , Camundongos Endogâmicos C57BL
20.
Proc Natl Acad Sci U S A ; 107(2): 598-603, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20018745

RESUMO

The mechanisms by which mucus helps prevent viruses from infecting mucosal surfaces are not well understood. We engineered non-mucoadhesive nanoparticles of various sizes and used them as probes to determine the spacing between mucin fibers (pore sizes) in fresh undiluted human cervicovaginal mucus (CVM) obtained from volunteers with healthy vaginal microflora. We found that most pores in CVM have diameters significantly larger than human viruses (average pore size 340 +/- 70 nm; range approximately 50-1800 nm). This mesh structure is substantially more open than the 15-100-nm spacing expected assuming mucus consists primarily of a random array of individual mucin fibers. Addition of a nonionic detergent to CVM caused the average pore size to decrease to 130 +/- 50 nm. This suggests hydrophobic interactions between lipid-coated "naked" protein regions on mucins normally cause mucin fibers to self-condense and/or bundle with other fibers, creating mucin "cables" at least three times thicker than individual mucin fibers. Although the native mesh structure is not tight enough to trap most viruses, we found that herpes simplex virus (approximately 180 nm) was strongly trapped in CVM, moving at least 8,000-fold slower than non-mucoadhesive 200-nm nanoparticles. This work provides an accurate measurement of the pore structure of fresh, hydrated ex vivo CVM and demonstrates that mucoadhesion, rather than steric obstruction, may be a critical protective mechanism against a major sexually transmitted virus and perhaps other viruses.


Assuntos
Muco do Colo Uterino/virologia , Colo do Útero/ultraestrutura , Muco/virologia , Simplexvirus/fisiologia , Vagina/ultraestrutura , Transporte Biológico , Adesão Celular , Muco do Colo Uterino/fisiologia , Colo do Útero/fisiologia , Elasticidade , Feminino , Géis , Humanos , Mucinas/ultraestrutura , Nanopartículas , Ovulação , Polietilenoglicóis , Simplexvirus/ultraestrutura , Vagina/fisiologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA