RESUMO
Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.
Assuntos
Aneuploidia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias/patologia , Cariótipo Anormal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Diploide , Genes Letais , Humanos , Cinesinas/deficiência , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias/genética , Fuso Acromático/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Mutações Sintéticas Letais/genética , Fatores de TempoRESUMO
PURPOSE: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS: SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS: SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.
Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Serina-Treonina Quinases , Mutações Sintéticas Letais , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Gastric cancer (GC) is a deadly disease with poor overall survival and limited therapeutic options. Genetic alterations such as mutations and/or deletions in chromatin remodeling gene AT-rich interactive domain 1 A (ARID1A) occur frequently in GC. Although ARID1A mutations/deletions are not a druggable target for conventional treatments, novel therapeutic strategies based on a synthetic lethal approach may be effective for the treatment of ARID1A-deficient cancers. METHODS: A kinase inhibitor library containing 551 compounds was screened in ARID1A isogenic GC cells for the ability to induce synthetic lethality effect. Selected hits' activity was validated, and the mechanism of the most potent candidate drug, AKT inhibitor AD5363 (capivasertib), on induction of the synthetic lethality with ARID1A deficiency was investigated. RESULTS: After robust vulnerability screening of 551 diverse protein kinase inhibitors, we identified the AKT inhibitor AZD5363 as being the most potent lead compound in inhibiting viability of ARID1A-/- cells. A synthetic lethality between loss of ARID1A expression and AKT inhibition by AZD5363 was validated in both GC cell model system and xenograft model. Mechanistically, AZD5363 treatment induced pyroptotic cell death in ARID1A-deficient GC cells through activation of the Caspase-3/GSDME pathway. Furthermore, ARID1A occupied the AKT gene promoter and regulated its transcription negatively, thus the GC cells deficient in ARID1A showed increased expression and phosphorylation of AKT. CONCLUSIONS: Our study demonstrates a novel synthetic lethality interaction and unique mechanism between ARID1A loss and AKT inhibition, which may provide a therapeutic and mechanistic rationale for targeted therapy on patients with ARID1A-defective GC who are most likely to be beneficial to AZD5363 treatment.
Assuntos
Proteínas de Ligação a DNA , Proteínas Proto-Oncogênicas c-akt , Piroptose , Neoplasias Gástricas , Mutações Sintéticas Letais , Fatores de Transcrição , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a DNA/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologiaRESUMO
PURPOSE: PARP inhibitors (PARPi) are effective in homologous recombination repair (HRR) defective (HRD) cancers. To (re)sensitise HRR proficient (HRP) tumours to PARPi combinations with other drugs are being explored. Our aim was to determine the mechanism underpinning the sensitisation to PARPi by inhibitors of cell cycle checkpoint kinases ATR, CHK1 and WEE1. EXPERIMENTAL DESIGN: A panel of HRD and HRP cells (including matched BRCA1 or 2 mutant and corrected pairs) and ovarian cancer ascites cells were used. Rucaparib (PARPi) induced replication stress (RS) and HRR (immunofluorescence microscopy for γH2AX and RAD51 foci, respectively), cell cycle changes (flow cytometry), activation of ATR, CHK1 and WEE1 (Western Blot for pCHK1S345, pCHK1S296 and pCDK1Y15, respectively) and cytotoxicity (colony formation assay) was determined, followed by investigations of the impact on all of these parameters by inhibitors of ATR (VE-821, 1 µM), CHK1 (PF-477736, 50 nM) and WEE1 (MK-1775, 100 nM). RESULTS: Rucaparib induced RS (3 to10-fold), S-phase accumulation (2-fold) and ATR, CHK1 and WEE1 activation (up to 3-fold), and VE-821, PF-477736 and MK-1775 inhibited their targets and abrogated these rucaparib-induced cell cycle changes in HRP and HRD cells. Rucaparib activated HRR in HRP cells only and was (60-1,000x) more cytotoxic to HRD cells. VE-821, PF-477736 and MK-1775 blocked HRR and sensitised HRP but not HRD cells and primary ovarian ascites to rucaparib. CONCLUSIONS: Our data indicate that, rather than acting via abrogation of cell cycle checkpoints, ATR, CHK1 and WEE1 inhibitors cause an HRD phenotype and hence "induced synthetic lethality" with PARPi.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Indóis , Proteínas Nucleares , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Tirosina Quinases , Pirazóis , Pirimidinas , Reparo de DNA por Recombinação , Humanos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Indóis/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Feminino , Reparo de DNA por Recombinação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Pirimidinonas/farmacologia , Mutações Sintéticas Letais/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Inibidores de Proteínas Quinases/farmacologia , Ftalazinas/farmacologia , Benzodiazepinonas , Morfolinas , SulfonamidasRESUMO
DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.
Assuntos
Sobrevivência Celular , Glioblastoma , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Rad52 de Recombinação e Reparo de DNA , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Temozolomida/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Polimerase teta , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismoAssuntos
Antineoplásicos , Epigênese Genética , Segunda Neoplasia Primária , Neoplasias Ovarianas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Doenças Raras , Adulto , Feminino , Humanos , DNA Helicases/genética , Metilação de DNA , Epigênese Genética/efeitos dos fármacos , Proteínas Nucleares/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Ovariectomia , Ovário/patologia , Ovário/cirurgia , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Fatores de Transcrição/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Mutações Sintéticas Letais/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/genéticaRESUMO
BCR-ABL1-positive acute lymphoblastic leukemia (ALL) cell survival is dependent on the inositol-requiring enzyme 1 alpha (IRE1α) branch of the unfolded protein response. In the current study, we have focused on exploring the efficacy of a simultaneous pharmacological inhibition of BCR-ABL1 and IRE1α in Philadelphia-positive (Ph+) ALL using tyrosine kinase inhibitor (TKI) nilotinib and the IRE1α inhibitor MKC-8866. The combination of 0.5 µM nilotinib and 30 µM MKC-8866 in Ph+ ALL cell lines led to a synergistic effect on cell viability. To mimic this dual inhibition on a genetic level, pre-B-cells from conditional Xbp1+/fl mice were transduced with a BCR-ABL1 construct and with either tamoxifen-inducible cre or empty vector. Cells showed a significant sensitization to the effect of TKIs after the induction of the heterozygous deletion. Finally, we performed a phosphoproteomic analysis on Ph+ ALL cell lines treated with the combination of nilotinib and MKC-8866 to identify potential targets involved in their synergistic effect. An enhanced activation of p38 mitogen-activated protein kinase α (p38α MAPK) was identified. In line with this findings, p38 MAPK and, another important endoplasmic reticulum-stress-related kinase, c-Jun N-terminal kinase (JNK) were found to mediate the potentiated cytotoxic effect induced by the combination of MKC-8866 and nilotinib since the targeting of p38 MAPK with its specific inhibitor BIRB-796 or JNK with JNK-in-8 hindered the synergistic effect observed upon treatment with nilotinib and MKC-8866. In conclusion, the identified combined action of nilotinib and MKC-8866 might represent a successful therapeutic strategy in high-risk Ph+ ALL.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Endorribonucleases/antagonistas & inibidores , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Mutações Sintéticas Letais/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas/farmacologia , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos Transgênicos , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Naftalenos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cultura Primária de Células , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proteína 1 de Ligação a X-Box/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Saracatinib is an oral Src-kinase inhibitor and has been studied in preclinical models and clinical trials of cancer therapy. GMI, a fungal immunomodulatory protein from Ganoderma microsporum, possesses antitumor capacity. The aim of this study is to evaluate the cytotoxic effect of combination treatment with saracatinib and GMI on parental and pemetrexed-resistant lung cancer cells. Cotreatment with saracatinib and GMI induced synergistic and additive cytotoxic effect in A549 and A400 cells by annexin V/propidium iodide assay and combination index. Using western blot assay, saracatinib, and GMI combined treatment synergistically induced caspase-7 activation in A549 cells. Different from A549 cells, saracatinib and GMI cotreatment markedly increased LC3B-II in A400 cells. ATG5 silencing abolished the caspase-7 activation and reduced cell death in A549 cells after cotreatment. This is the first study to provide a novel strategy of treating lung cancer with or without drug resistance via combination treatment with GMI and saracatinib.
Assuntos
Proteína 5 Relacionada à Autofagia/genética , Benzodioxóis/farmacologia , Caspase 7/genética , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinases da Família src/genética , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Ganoderma/química , Humanos , Fatores Imunológicos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutações Sintéticas Letais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidoresRESUMO
BACKGROUND: AT-rich interactive domain 1A (ARID1A) is a tumor suppressor gene that is frequently mutated in gastric cancer (GC). Although ARID1A mutations are not a druggable target for conventional treatments, novel therapeutic strategies based on a synthetic lethal approach are effective for ARID1A-deficient cancers. The histone methyltransferase EZH2 acts in a synthetic lethal manner in ARID1A-mutated ovarian cancer, although its role in GC remains unknown. METHODS: The selective sensitivity of the EZH2 inhibitors for ARID1A-deficient GC cells was evaluated using cell viability and colony formation assays. The expression of PI3K/AKT signaling genes were investigated using TCGA's cBioPortal database to determine whether the homeostasis between ARID1A and EZH2 is related to cell proliferation and survival via the PI3K/AKT signaling pathway. We also evaluated the phosphorylation of PI3K/AKT signaling proteins in ARID1A knock downed ARID1A-WT GC cells. RESULTS: EZH2 inhibitors decreased the viability of ARID1A-deficient cells in a dose-dependent manner and demonstrated the selective sensitivity to ARID1A-deficient cells in vitro experiment system. Bioinformatics approach revealed that the PI3K/AKT signaling was tended to be activated in ARID1A-deficient GC enhancing cell viability and, furthermore, down-regulation of EZH2 in ARID1A-deficient GC was related to normalization of PI3K/AKT signaling pathway. The cell experiment revealed that phosphorylated AKT was upregulated in ARID1A-deficent GC cells. CONCLUSIONS: The present findings provide a rationale for the selective sensitivity of EZH2 inhibitors against ARID1A-deficient GC and suggest the potential efficacy of targeted therapy using EZH2 inhibitors in this patient population.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/deficiência , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Mutações Sintéticas Letais/efeitos dos fármacos , Fatores de Transcrição/deficiência , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Humanos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Regulação para Cima/efeitos dos fármacosRESUMO
Poly (ADP-ribose) polymerase 1 inhibitors (PARPi) are used to treat recurrent ovarian cancer (OC) patients due to greater survival benefits and minimal side effects, especially in those patients with complete or partial response to platinum-based chemotherapy. However, acquired resistance of platinum-based chemotherapy leads to the limited efficacy of PARPi monotherapy in most patients. Twist is recognized as a possible oncogene and contributes to acquired cisplatin resistance in OC cells. In this study, we show how Twist knockdown cisplatin-resistant (CisR) OC cells blocked DNA damage response (DDR) to sensitize these cells to a concurrent treatment of cisplatin as a platinum-based chemotherapy agent and niraparib as a PARPi on in vitro two-dimensional (2D) and three-dimensional (3D) cell culture. To investigate the lethality of PARPi and cisplatin on Twist knockdown CisR OC cells, two CisR cell lines (OV90 and SKOV3) were established using step-wise dose escalation method. In addition, in vitro 3D spheroidal cell model was generated using modified hanging drop and hydrogel scaffolds techniques on poly-2-hydroxylethly methacrylate (poly-HEMA) coated plates. Twist expression was strongly correlated with the expression of DDR proteins, PARP1 and XRCC1 and overexpression of both proteins was associated with cisplatin resistance in OC cells. Moreover, combination of cisplatin (Cis) and niraparib (Nira) produced lethality on Twist-knockdown CisR OC cells, according to combination index (CI). We found that Cis alone, Nira alone, or a combination of Cis+Nira therapy increased cell death by suppressing DDR proteins in 2D monolayer cell culture. Notably, the combination of Nira and Cis was considerably effective against 3D-cultures of Twist knockdown CisR OC cells in which Endoplasmic reticulum (ER) stress is upregulated, leading to initiation of mitochondrial-mediated cell death. In addition, immunohistochemically, Cis alone, Nira alone or Cis+Nira showed lower ki-67 (cell proliferative marker) expression and higher cleaved caspase-3 (apoptotic marker) immuno-reactivity. Hence, lethality of PARPi with the combination of Cis on Twist knockdown CisR OC cells may provide an effective way to expand the therapeutic potential to overcome platinum-based chemotherapy resistance and PARPi cross resistance in OC.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Mitocôndrias/efeitos dos fármacos , Proteínas Nucleares/genética , Neoplasias Ovarianas/tratamento farmacológico , Proteína 1 Relacionada a Twist/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Indazóis/farmacologia , Mitocôndrias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Mutações Sintéticas Letais/genéticaRESUMO
OBJECTIVES: Extending the therapeutic spectrum of PARP-inhibitors (PARPi) beyond BRCA1-deficiency and/or overcoming PARPi-resistance is of high clinical interest. This is particularly true for the identification of innovative therapeutic strategies for ovarian cancer, given the recent advances in the use of PARPi in clinical practice. In this regard, the combination of PARPi with chemotherapy is a possible strategy for defining new therapeutic standards. In this study, we analyzed the therapeutic effect of novel triazene derivatives, including the drug CT913 and its metabolite CT913-M1 on ovarian cancer cells and describe their interaction with the PARPi olaparib. METHODS: In vitro assays for drug characterization including RNA-Seq were applied in a selected panel of ovarian cancer cell lines. RESULTS: CT913 treatment conferred a dose-dependent reduction of cell viability in a set of platinum-sensitive and platinum-resistant ovarian cancer cell lines with an IC50 in the higher micromolar range (553-1083 µM), whereas its metabolite CT913-M1 was up to 69-fold more potent, especially among long-term treatment (IC50 range: 8-138 µM). Neither of the drugs sensitized for cisplatin. CT913 conferred synthetic lethality in BRCA1-deficient ovarian cancer cells, indicating that its effect is augmented by a deficiency in homologous recombination repair (HR). Furthermore, CT913 showed a synergistic interaction with olaparib, independently of BRCA1 mutational status. CT913 strongly induced CDKN1A transcription, suggesting cell cycle arrest as an early response to this drug. It moreover downregulated a variety of transcripts involved in DNA-repair pathways. CONCLUSIONS: This is the first study, suggesting the novel triazene drug CT913 as enhancer drug for extending the therapeutic spectrum of PARPi.
Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Triazenos/farmacologia , Proteína BRCA1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA-Seq , Reparo de DNA por Recombinação/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Triazenos/uso terapêuticoRESUMO
OBJECTIVE: Pathogenic variations in the homologous recombination (HR) gene, BRCA1 interacting protein C-terminal helicase 1 (BRIP1) increase the risk for ovarian cancer. PARP inhibitors (PARPi) exert a synthetic lethal effect in BRCA-mutated ovarian cancers. Effective HR requires cooperation between BRCA1 and BRIP1; therefore, BRIP1-incompetancy may predict vulnerability to synthetic lethality. Here we investigated the response of ovarian epithelial cells with defective BRIP1 function to PARPi, and compared these cells to those lacking BRCA1 activity. METHODS: We engineered Chinese Hamster ovarian (CHO) epithelial cells to express deficient BRIP1 or BRCA1, and exposed them to olaparib with or without carboplatin or cisplatin. We assessed cellular proliferation and survival; we calculated inhibitory concentrations and combination and reduction drug indices. RESULTS: BRIP1 and BRCA1 inactivation impedes HR activity, decreases cellular proliferation and compromises DNA damage recovery. Platinum agent exposure impairs cellular survival. Olaparib exposure alone decreases cell viability in BRCA1-deficient cells, although has no effect on BRIP1-deficient cells. Combining carboplatin or cisplatin with olaparib synergistically attenuates cellular survival, consistent with synthetic lethality. CONCLUSIONS: BRIP1-deficient ovarian epithelial cells exhibit defective HR, resulting in synthetic lethality when exposed to a platinum agent/PARPi combination. PARPi alone had no effect; this lack of effect may result from distinguishing molecular properties of BRIP1and/or consequences of genomic background. Our study identifies altered BRIP1 as a target for precision medicine-based therapies for ovarian cancers. This investigation supports consideration of the use of a platinum agent/PARPi combination in ovarian cancers depending upon genetic profile and genomic background.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , RNA Helicases/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Células CHO , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cricetulus , Sinergismo Farmacológico , Proteínas de Grupos de Complementação da Anemia de Fanconi/deficiência , Feminino , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão/métodos , RNA Helicases/deficiência , Reparo de DNA por Recombinação/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacosRESUMO
The suboptimal effectiveness of ß-lactam antibiotics against Mycobacterium tuberculosis has hindered the utility of this compound class for tuberculosis treatment. However, the results of treatment with a second-line regimen containing meropenem plus a ß-lactamase inhibitor were found to be encouraging in a case study of extensively drug-resistant tuberculosis (M. C. Payen, S. De Wit, C. Martin, R. Sergysels, et al., Int J Tuberc Lung Dis 16:558-560, 2012, https://doi.org/10.5588/ijtld.11.0414). We hypothesized that the innate resistance of M. tuberculosis to ß-lactams is mediated in part by noncanonical accessory proteins that are not considered the classic targets of ß-lactams and that small-molecule inhibitors of those accessory targets might sensitize M. tuberculosis to ß-lactams. In this study, we screened an NIH small-molecule library for the ability to sensitize M. tuberculosis to meropenem. We identified six hit compounds, belonging to either the N-arylindole or benzothiophene chemotype. Verification studies confirmed the synthetic lethality phenotype for three of the N-arylindoles and one benzothiophene derivative. The latter was demonstrated to be partially bioavailable via oral administration in mice. Structure-activity relationship studies of both structural classes identified analogs with potent antitubercular activity, alone or in combination with meropenem. Transcriptional profiling revealed that oxidoreductases, MmpL family proteins, and a 27-kDa benzoquinone methyltransferase could be the targets of the N-arylindole potentiator. In conclusion, our compound-compound synthetic lethality screening revealed novel small molecules that were capable of potentiating the action of meropenem, presumably via inhibition of the innate resistance conferred by ß-lactam accessory proteins. ß-Lactam compound-compound synthetic lethality may be an alternative approach for drug-resistant tuberculosis.
Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Antibacterianos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/metabolismo , Feminino , Meropeném/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismoAssuntos
Proteínas de Ligação a DNA/genética , Endonucleases Flap/genética , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Mutações Sintéticas Letais/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Sistemas de Liberação de Medicamentos , Endonucleases Flap/antagonistas & inibidores , Recombinação Homóloga/efeitos dos fármacos , Humanos , Complexos Multiproteicos/genética , Neoplasias/genética , Parthanatos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Mutações Sintéticas Letais/efeitos dos fármacosRESUMO
There is increasing interest in developing and applying DNA repair inhibitors in cancer treatment to augment the efficacy of radiation and conventional genotoxic chemotherapy. However, targeting the inhibitor is required to avoid reducing the repair capacity of normal tissue. The aim of this study was to develop nanodelivery systems for the encapsulation of novel imidopiperidine-based inhibitors of the DNA 3'-phosphatase activity of polynucleotide kinase/phosphatase (PNKP), a DNA repair enzyme that plays a critical role in rejoining DNA single- and double-strand breaks. For this purpose, newly identified hit compounds with potent PNKP inhibitory activity, imidopiperidines A12B4C50 and A83B4C63 were encapsulated in polymeric micelles of different poly(ethylene oxide)- b-poly(ε-caprolactone) (PEO- b-PCL)-based structures. Our results showed efficient loading of A12B4C50 and A83B4C63 in PEO- b-PCLs with pendent carboxyl and benzyl carboxylate groups, respectively, and relatively slow release over 24 h. Both free and encapsulated inhibitors were able to sensitize HCT116 cells to radiation and the topoisomerase I poison, irinotecan. In addition, the encapsulated inhibitors were capable of inducing synthetic lethalilty in phosphatase and tensin homologue (PTEN)-deficient cells. We also established the validity of the peptide GE11 as a suitable ligand for active targeted delivery of nanoencapsulated drugs to colorectal cancer cells overexpressing epidermal growth factor receptor (EGFR). Our results show the potential of nanoencapsulated inhibitors of PNKP as either mono or combined therapeutic agents for colorectal cancer.
Assuntos
Neoplasias Colorretais/terapia , Enzimas Reparadoras do DNA/antagonistas & inibidores , Nanocápsulas/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piperidinas/administração & dosagem , Mutações Sintéticas Letais/efeitos dos fármacos , Quimiorradioterapia/métodos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Composição de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Humanos , Irinotecano/farmacologia , Micelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/farmacologia , Radiação IonizanteRESUMO
PARP enzymes are essential for DNA damage repair. Cancers with defective homologous recombination DNA repair, such has BRCA1- and BRCA2-mutated breast cancers, are targets for PARP inhibitors (PARPi) through the exploitation of synthetic lethality. A number of PARPi are currently undergoing clinical evaluation in breast cancer, with olaparib and talazoparib having demonstrated superior efficacy compared with standard chemotherapy in advanced germline BRCA-mutated cancer. This review describes the biological rationale for PARPi and presents the accumulating data on PARPi use in breast cancer.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Estadiamento de Neoplasias , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Mutações Sintéticas Letais/efeitos dos fármacos , Resultado do TratamentoRESUMO
BACKGROUND: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive type of cancer that lacks effective targeted therapy. Despite detailed molecular profiling, no targeted therapy has been established. Hence, with the aim of gaining deeper understanding of the functional differences of TNBC subtypes and how that may relate to potential novel therapeutic strategies, we studied comprehensive anticancer-agent responses among a panel of TNBC cell lines. METHOD: The responses of 301 approved and investigational oncology compounds were measured in 16 TNBC cell lines applying a functional profiling approach. To go beyond the standard drug viability effect profiling, which has been used in most chemosensitivity studies, we utilized a multiplexed readout for both cell viability and cytotoxicity, allowing us to differentiate between cytostatic and cytotoxic responses. RESULTS: Our approach revealed that most single-agent anti-cancer compounds that showed activity for the viability readout had no or little cytotoxic effects. Major compound classes that exhibited this type of response included anti-mitotics, mTOR, CDK, and metabolic inhibitors, as well as many agents selectively inhibiting oncogene-activated pathways. However, within the broad viability-acting classes of compounds, there were often subsets of cell lines that responded by cell death, suggesting that these cells are particularly vulnerable to the tested substance. In those cases we could identify differential levels of protein markers associated with cytotoxic responses. For example, PAI-1, MAPK phosphatase and Notch-3 levels associated with cytotoxic responses to mitotic and proteasome inhibitors, suggesting that these might serve as markers of response also in clinical settings. Furthermore, the cytotoxicity readout highlighted selective synergistic and synthetic lethal drug combinations that were missed by the cell viability readouts. For instance, the MEK inhibitor trametinib synergized with PARP inhibitors. Similarly, combination of two non-cytotoxic compounds, the rapamycin analog everolimus and an ATP-competitive mTOR inhibitor dactolisib, showed synthetic lethality in several mTOR-addicted cell lines. CONCLUSIONS: Taken together, by studying the combination of cytotoxic and cytostatic drug responses, we identified a deeper spectrum of cellular responses both to single agents and combinations that may be highly relevant for identifying precision medicine approaches in TNBC as well as in other types of cancers.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Mutações Sintéticas Letais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores , Biomarcadores Tumorais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Biologia Computacional , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
The concept of "BRCAness" was first described in 2004 to define the situation in which a homologous recombination repair (HRR) defect in a tumor relates to and phenocopies BRCA1 or BRCA2 loss-of-function mutations. Soon after the discovery of synthetic lethality of PARP1/2 inhibitors in BRCA1- or BRCA2-deficient cells, McCabe and colleagues extended the concept of BRCAness to homologous recombination deficiency (HRD) by studying the sensitivity of cancer cells to PARP inhibitors. They genetically revealed that deficiency in HR-related genes (RAD51, RAD54, DSS1, and RPA1), DNA damage signaling genes (ATR, ATM, CHK1, CHK2, and NBS1), or Fanconi anemia-related genes (FANCD2, FANCA, and FANCC) conferred sensitivity to PARP inhibitors. Thus, cells acquire BRCAness either by genetic inactivation of the BRCA or HRD genes. Here, we briefly review how genomic profiling can identify BRCAness and deficiencies in HRD genes and the current difficulty to apply BRCAness/HRD in the clinic. We also discuss how BRCAness relates to HRD and the utility of evaluating BRCAness/HRD to select therapies with PARP inhibitors (olaparib, rucaparib, niraparib, talazoparib, pamiparib, fuzuloparib), topoisomerase I (TOP1) inhibitors (irinotecan, topotecan, and tumor-targeted TOP1 inhibitors), and platinum derivatives (cisplatin and carboplatin). See related article by McCabe and colleagues, Cancer Res 2006;66:8109-15.
Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Dano ao DNA/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Proteína BRCA1/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína BRCA2/genéticaRESUMO
Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE: Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.
Assuntos
Imunidade Adaptativa , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutações Sintéticas Letais/efeitos dos fármacos , Microambiente Tumoral , Quinases Proteína-Quinases Ativadas por AMP/genéticaRESUMO
Understanding how carcinogenesis can expose cancers to synthetically lethal vulnerabilities has been an essential underpinning of development of modern anticancer therapeutics. Isocitrate dehydrogenase wild-type (IDHWT) glioblastoma multiforme (GBM), which is known to have upregulated branched-chain amino acid transaminase 1 (BCAT1) expression, has not had treatments developed to the same extent as the IDH mutant counterpart, despite making up the majority of cases. In this issue, Zhang and colleagues utilize a metabolic screen to identify α-ketoglutarate (AKG) as a synthetically lethal treatment in conjunction with BCAT1 inhibition in IDHWT GBM. These treatments synergize in a multipronged approach that limits substrate catabolism and disrupts mitochondrial homeostasis through perturbing the balance of NAD+/NADH, leading to mTORC1 inhibition and a reduction of nucleotide biosynthesis. Based on these results, the authors propose combination treatment targeting branched chain amino acid catabolism as a potential option for patients with IDHWT GBM. See related article by Zhang et al., p. 2388.