Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063472

RESUMO

The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.


Assuntos
Mytilus edulis , Mytilus , Humanos , Animais , Mytilus/genética , Mytilus edulis/genética , Polimorfismo de Nucleotídeo Único , Genoma , Inglaterra
2.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609025

RESUMO

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Assuntos
Di-Hidroxifenilalanina , Mytilus edulis , Animais , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Mytilus edulis/genética , Mytilus edulis/química , Mytilus edulis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Proteínas/genética , Proteínas/química , Proteínas/isolamento & purificação , Hidroxilação , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Biol Lett ; 20(3): 20230457, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38531416

RESUMO

Plastic pollution and ongoing climatic changes exert considerable pressure on coastal ecosystems. Unravelling the combined effects of these two threats is essential to management and conservation actions to reduce the overall environmental risks. We assessed the capacity of a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached and virgin low-density polyethylene pellets. Our results revealed a significant interaction between temperature and plastic leachates on mussel survival rates. Specifically, microplastic leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates significantly decreased at 35°C, and this decrease was even more significant following an exposure to leachates from beached pellets; these pellets had a higher concentration of additives compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress the importance of adopting integrated approaches combining the effects of multiple environmental threats on key marine species to understand and mitigate their potential synergistic effects on ecosystem dynamics and resilience in the face of the changing environment.


Assuntos
Calor Extremo , Mytilus edulis , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Resposta ao Choque Térmico
4.
Environ Res ; 252(Pt 2): 118944, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636647

RESUMO

Paralytic shellfish toxins (PST) in shellfish products have led to severe risks to human health. To monitor the risk, the Canadian Shellfish Sanitation Program has been collecting longitudinal PST measurements in blue mussel (Mytilus edulis) and soft-shell clam (Mya arenaria) samples in six coastal provinces of Canada. The spatial distributions of major temporal variation patterns were studied via Functional Principal Component Analysis. Seasonal increases in PST contamination were found to vary the most in terms of magnitude along the coastlines, which provides support for location-specific management of the time-sensitive PST contamination. In British Columbia, the first functional principal component (FPC1) indicated the variance among the magnitudes, while FPC2 indicated the seasonality of the PST levels. The temporal variations tended to be positively correlated with the abundance of dianoflagellates Alexandrium spp., and negatively with precipitation and inorganic nutrients. These findings indicate the underlying mechanism of PST variation in various geographical settings. In New Brunswick, Prince Edward, and Nova Scotia, the top FPCs indicated that the PST contamination differed mostly in the seasonal increase of the PST level during summer.


Assuntos
Toxinas Marinhas , Estações do Ano , Animais , Estudos Longitudinais , Toxinas Marinhas/análise , Canadá , Monitoramento Ambiental , Mytilus edulis , Bivalves , Análise de Componente Principal , Dinoflagellida , Intoxicação por Frutos do Mar
5.
J Environ Manage ; 369: 122250, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213853

RESUMO

High diversity seabed habitats, such as shellfish aggregations, play a significant role in marine ecosystem sustainability but are susceptible to bottom disturbance induced by anthropogenic activities. Regular monitoring of these habitats with effective mapping methods is therefore essential. Multibeam echosounder (MBES) has been widely used in recent decades for seabed characterization due to its non-destructive manner and extensive spatial coverage compared to traditional methods like bottom sampling. Nevertheless, bottom sampling remains essential to link ground truth with acoustic seabed classification. Using seabed samples and MBES measurements, machine learning techniques are commonly employed to model their relationships and generate classification maps of an extended seabed. However, limited ground truth data, resulting from constraints in regulations, budget, or time, may impede the development of robust machine learning models. To address this challenge, we applied a semi-supervised machine learning method to classify seabed sediments of a blue mussel (Mytilus edulis) cultivation area in the Oosterschelde, the Netherlands. We utilized nine boxcore samples to generate pseudo-labels on MBES data. These pseudo-labels enlarged the training data size, facilitated the training of three comprehensive machine learning algorithms (Gradient Boosting, Random Forest, and Support Vector Machine), and helped to classify the study site into mussel and non-mussel areas. We found the geomorphological and backscatter-related features to be complementary for mussel culture detection. Our classification results were demonstrated effective through expert knowledge of this cultivation area and brought insights for future research on natural mussel habitats.


Assuntos
Ecossistema , Animais , Monitoramento Ambiental/métodos , Aprendizado de Máquina Supervisionado , Países Baixos , Bivalves , Aprendizado de Máquina , Mytilus edulis
6.
Environ Microbiol ; 25(12): 3435-3449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941484

RESUMO

The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut-microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts of M. edulis collected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no-food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non-depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments.


Assuntos
Microbioma Gastrointestinal , Mytilus edulis , Mytilus , Animais , Alimentos Marinhos
7.
Environ Microbiol ; 25(12): 2792-2806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661930

RESUMO

Ingestion of microplastics (MP) by suspension-feeding bivalves has been well-documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel, Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF or Spartina spp. particles (dried, ground marsh grass), ca. 250-500 µm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community than Spartina spp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF or Spartina spp. Post-ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects.


Assuntos
Microbioma Gastrointestinal , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Nylons , Plásticos , Ecossistema , Poluentes Químicos da Água/análise
8.
Mol Ecol ; 32(21): 5724-5741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795906

RESUMO

Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.


Assuntos
Mytilus edulis , Mytilus , Neoplasias , Animais , Mytilus edulis/genética , Baías , Mytilus/genética , DNA Mitocondrial/genética
9.
Fish Shellfish Immunol ; 135: 108654, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868539

RESUMO

Biomonitoring at the scale of the aquatic continuum and based on biomarkers, requires various representative species and a knowledge of their sensitivity to contaminants. Mussel immunomarkers are established tools for evaluating immunotoxic stress, but little is known about the consequences of an immune activation by local microorganisms on their response to pollution. This study aims to compare the sensitivity of cellular immunomarkers in two mussel species from different environments, the marine mussel Mytilus edulis (blue mussel) and the freshwater mussel Dreissena polymorpha (zebra mussel), to chemical stressors combined with bacterial challenge. Haemocytes were exposed ex vivo to the contaminants (bisphenol A, caffeine, copper chloride, oestradiol, ionomycin) for 4 h. The chemical exposures were coupled with simultaneous bacterial challenges (Vibrio splendidus and Pseudomonas fluorescens) to trigger activation of the immune response. Cellular mortality, phagocytosis efficiency and phagocytosis avidity were then measured by flow cytometry. The two mussel species had different basal levels since D. polymorpha showed higher cell mortality than M. edulis (23.9 ± 11% and 5.5 ± 3% dead cells respectively), and lower phagocytosis efficiency (52.6 ± 12% and 62.2 ± 9%), but similar phagocytosis avidity (17.4 ± 5 and 13.4 ± 4 internalised beads). Both bacterial strains led to an increase in cellular mortality (+8.4% dead cells in D. polymorpha, +4.9% in M. edulis), as well an activation of phagocytosis (+9.2% of efficient cells in D. polymorpha, +6.2% efficient cells and +3 internalised beads per cell in M. edulis). All chemicals triggered an increase in haemocyte mortality and/or phagocytotic modulations, except for bisphenol A. The two species differed in the amplitude of their response. The addition of a bacterial challenge significantly altered cell responses to chemicals with synergetic and antagonistic variations compared to a single exposure, depending on the compound used and the mussel species. This work highlights the species-specific sensitivity of mussel immunomarkers to contaminants, with or without bacterial challenge, and the necessity of considering the presence of in natura non-pathogenic microorganisms for future in situ applications of immunomarkers.


Assuntos
Dreissena , Mytilus edulis , Poluentes Químicos da Água , Animais , Fagocitose , Água Doce , Poluentes Químicos da Água/toxicidade
10.
Fish Shellfish Immunol ; 139: 108919, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37422276

RESUMO

Mussels are constantly exposed to various pollutants in the environment, which can impair their immune defences against microbes and thus threaten their survival. In this study, we expand the insight into a key parameter of immune response in two mussel species by exploring the impact of exposure to pollutants or bacteria or simultaneous chemical and biological exposure on haemocyte motility. Basal haemocyte velocity in primary culture was high and increasing over time in Mytilus edulis (mean cell speed of 2.32 µm/min ± 1.57) whereas Dreissena polymorpha showed a constant and rather low cell motility with time (mean cell speed of 0.59 µm/min ± 0.1). In the presence of bacteria, the motility of haemocytes was instantly enhanced and slowed down after 90 min for M. edulis. In contrast, in vitro exposure of haemocytes to chemicals, either Bisphenol A, oestradiol, copper, or caffeine, induced an inhibition of cell motility in both mussel species. Finally, the cellular activation observed during bacterial challenges was inhibited by simultaneous exposure to bacteria and pollutants. Overall, our results indicate that chemical contaminants can alter haemocyte migration in mussels which can weaken their response to pathogens and therefore increase their susceptibility to infectious diseases.


Assuntos
Dreissena , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Cobre , Estresse Fisiológico , Poluentes Químicos da Água/toxicidade
11.
Parasitology ; 150(11): 1015-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705257

RESUMO

In recent field studies, suspected gymnophallid metacercariae were histologically located in the mantle of mussels from the Norwegian Sea. Mussels from the sites in which that infection was detected also presented abnormally high pearl numbers. It has been previously described that gymnophallid metacercariae could cause pearl formation processes in mussels, as a host reaction to encapsulate these metacercariae. Given the pathological host reaction these parasites elicit, a study was performed to identify gymnophallid metacercariae found in mussels collected from Tromsø at morphological and molecular level and to assess, by the use of molecular tools, the relationship between the parasite and the biological material inside the pearls. As a result, Gymnophallus bursicola metacercariae infecting Norwegian Mytilus edulis were identified according to morphological characters, along with the first 18S rDNA and COI sequences for this trematode species. In addition, parasite DNA from the core of the pearls was extracted and amplified for the first time, confirming the parasitological origin of these pearls. This procedure could allow identifying different parasitic organisms responsible for the generation of pearls in bivalves.


Assuntos
Mytilus edulis , Mytilus , Trematódeos , Animais , Mytilus edulis/parasitologia , Metacercárias/genética , Trematódeos/genética , Trematódeos/anatomia & histologia , DNA Ribossômico/genética
12.
J Invertebr Pathol ; 200: 107950, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301277

RESUMO

Mass mortality events affecting the blue mussels Mytilus edulis have been observed in France since 2014. The DNA of the bacterium Francisella halioticida, reported as pathogen of giant abalone (Haliotis gigantea) and Yesso scallop (Mizuhopecten yessoensis) has been detected recently in mussels from areas suffering mortalities. Isolation of this bacterium was attempted from individuals collected during mortality events. Identification was performed by 16S rRNA gene sequencing, real-time specific PCR and MALDI-ToF using spectra produced from the strain 8472-13A isolated from diseased Yesso scallop in Canada. Five isolates were identified as F. halioticida by real-time specific PCR and 16S rRNA sequencing. MALDI-ToF allowed the direct identification of four isolates (FR22a,b,c,d) which had 100% identity on the 16S rRNA gene with the known strains. On the other hand, one isolate (FR21) was not recognized by MALDI-ToF and had 99.9% identity on the 16S rRNA gene. The FR22 isolates showed difficult growth and required media optimization, which was not the case with the FR21 isolate. For these reasons, it was hypothesized that two type strains are present on French coasts, named FR21 and FR22. The FR21 isolate was selected for phenotypic analysis (growth curve, biochemical characteristics, electron microscopy), phylogenetic analysis and an experimental challenge. This isolate showed distinct differences compared to published F. halioticida strains, both at phenotypic and genotypic levels. Experimental infections of adult mussels led to 36% mortalities in 23 days following intramuscular injection with 3 × 107 CFU while a lower dose (3 × 103 CFU) did not lead to significant mortalities. In the context of this study, the strain FR21 was not virulent towards adult mussels.


Assuntos
Gastrópodes , Mytilus edulis , Animais , Mytilus edulis/genética , Filogenia , RNA Ribossômico 16S/genética , França
13.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132945

RESUMO

Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development of preventive strategies. Although exercising is effective in managing this condition, it is applicable only for individuals who can engage in physical activities and are not bedridden. A combination of exercise and nutritional supplementation has emerged as a more advantageous approach. Here, we evaluated the effects of enzyme-assisted hydrolysates of Mytilus edulis prepared using Protamex (PMH), Alcalase (AMH), or Flavourzyme (FMH) in protecting against muscle atrophy in a dexamethasone (Dex)-induced muscular atrophy model in vitro and in vitro. Alcalase-assisted M. edulis hydrolysate (AMH) was the most efficient among the tested treatments and resulted in higher protein recovery (57.06 ± 0.42%) and abundant amino acid composition (43,158 mg/100 g; 43.16%). AMH treatment also escalated the proliferation of C2C12 cells while increasing the total number of nuclei, myotube coverage, and myotube diameter. These results were corroborated by a successful reduction in the levels of proteins responsible for muscle atrophy, including E3 ubiquitin ligases, and an increase in the expression of proteins associated with muscle hypertrophy, including myogenin and MyHC. These results were further solidified by the successful enhancement of locomotor ability and body weight in zebrafish following AMH treatment. Thus, these findings highlight the potential of AMH in recovery from muscle atrophy.


Assuntos
Mytilus edulis , Animais , Humanos , Subtilisinas , Peixe-Zebra , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/prevenção & controle , Atrofia Muscular/induzido quimicamente , Fibras Musculares Esqueléticas , Músculo Esquelético
14.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894549

RESUMO

Lysozymes are universal components of the innate immune system of animals that kill bacteria by hydrolyzing their main cell wall polymer, peptidoglycan. Three main families of lysozyme have been identified, designated as chicken (c)-, goose (g)- and invertebrate (i)-type. In response, bacteria have evolved specific protein inhibitors against each of the three lysozyme families. In this study, we developed a serial array of three affinity matrices functionalized with a c-, g-, and i-type inhibitors for lysozyme typing, i.e., to detect and differentiate lysozymes in fluids or extracts from animals. The tool was validated on the blue mussel (Mytilus edulis), whose genome carries multiple putative i-, g-, and c-type lysozyme genes. Hemolymph plasma of the animals was found to contain both i- and g-type, but not c-type lysozyme. Furthermore, hemolymph survival of Aeromonas hydrophila and E. coli strains lacking or overproducing the i- type or g-type lysozyme inhibitor, respectively, was analyzed to study the role of the two lysozymes in innate immunity. The results demonstrated an active role for the g-type lysozyme in the innate immunity of the blue mussel, but failed to show a contribution by the i-type lysozyme. Lysozyme profiling using inhibitor-based affinity chromatography will be a useful novel tool for studying animal innate immunity.


Assuntos
Muramidase , Mytilus edulis , Animais , Muramidase/farmacologia , Muramidase/química , Mytilus edulis/metabolismo , Escherichia coli/metabolismo , Hemolinfa/metabolismo , Antibacterianos , Imunidade Inata , Filogenia
15.
J Sci Food Agric ; 103(6): 2970-2980, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36409163

RESUMO

BACKGROUND: Studies have shown that blue mussel lipid extract (BMLE) has strong anti-inflammatory activity in both rheumatoid arthritis patients and animal arthritis models. Chronic inflammation was closely related to type 2 diabetes mellitus (T2DM). Though the beneficial effects cannot be completely attributed to n-3 polyunsaturated fatty acids, the aim of this study was to investigate whether BMLE can improve glycemic traits of T2DM patients. METHOD: In a double-blind randomized controlled trial, 133 Chinese T2DM participants were randomized to either fish oil (FO, n = 44), BMLE (n = 44), or corn oil (CO, n = 45) groups for 60 days. The participants were asked to take the corresponding oil capsules (two capsules per day, 0.8 g per capsule), which provided 1.6 g day-1 of FO (29.9% eicosapentaenoic acid + 20.4% docosahexaenoic acid), BMLE (20.7% eicosapentaenoic acid + 26.7% docosahexaenoic acid), or CO (53.5% linoleic acid). RESULTS: The fasting serum concentration of insulin (P = 0.005) and the homeostasis model of insulin resistance (P = 0.026) were significantly decreased in the BMLE group, whereas no significant change was found in the FO or CO groups. There was no significant difference between groups on serum glycosylated hemoglobin. Tumor necrosis factor-α was significantly decreased in the BMLE group (P = 0.003), but not in the FO or CO groups. A significant decrease of interleukin-1ß was observed in the BMLE and CO groups (P = 0.004 and P = 0.011 respectively), but not in the FO group. The total cholesterol was significantly decreased in the BMLE and CO groups (P < 0.001 and P < 0.001 respectively), but not in the FO group. Triacylglycerol was significantly decreased in the BMLE group (P = 0.007), but not in the FO or CO groups. High-density lipoprotein cholesterol was significantly lower in the BMLE and CO groups than in the FO group (P = 0.003). CONCLUSION: Blue mussel lipid supplements improved glycemic traits, inflammatory cytokines, and lipids profile in Chinese T2DM patients (Chinese Clinical Trial Registration number: ChiCTR1900025617). © 2022 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Tipo 2 , Mytilus edulis , Humanos , Animais , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos , População do Leste Asiático , Óleos de Peixe , Suplementos Nutricionais , HDL-Colesterol , Método Duplo-Cego
16.
J Helminthol ; 97: e102, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38130206

RESUMO

Age dynamics of the ability of cercariae of two digenean species, Himasthla elongata (Himasthlidae) and Renicola parvicaudatus (Renicolidae), to infect the second intermediate host (SIH), mussels (Mytilus edulis), was investigated experimentally. This is the first study of this kind made on cercariae transmitted in the intertidal of the northern seas. The larvae of all tested ages (from 0.5 to 6 hr) were equally successful in infecting mussels. This finding disagrees with the literature data on cercariae of several freshwater digeneans, which are practically incapable of infecting the SIH during the first 1-3 hr of life. The presence of a time delay before the attainment of the maximum infectivity (TDMI) may be associated with the need for physiological maturation of cercariae in the very beginning of their life in the environment, the need for their broad dispersion, and the prevention of superinfection of the downstream host. The absence of TDMI in the cercariae examined in our study could be associated with the instability of environmental factors in the marine intertidal (wave impact, tidal currents). These factors promote a broad dispersion of cercariae in the intertidal biotope and prevent superinfection of potential SIHs. Biological and behavioural features may also play a role. We hypothesize that the presence or absence of TDMI does not depend on the taxonomic affiliation of the cercariae but is determined by the transmission conditions.


Assuntos
Mytilus edulis , Superinfecção , Trematódeos , Animais , Ecossistema , Trematódeos/fisiologia , Cercárias
17.
Mol Biol Evol ; 38(9): 4043-4055, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34014311

RESUMO

Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalyzed by enzymes and shell matrix proteins (SMP). Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization SMPs derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by the analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis, and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid-base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.


Assuntos
Crassostrea , Mytilus edulis , Exoesqueleto/metabolismo , Animais , Biomineralização , Calcificação Fisiológica/genética , Crassostrea/genética , Mytilus edulis/genética , Mytilus edulis/metabolismo
18.
Mol Ecol ; 31(3): 736-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192383

RESUMO

Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.


Assuntos
Mytilus edulis , Mytilus , Neoplasias , Animais , Cães , Europa (Continente) , Mytilus/genética , Mytilus edulis/genética , Prevalência
19.
Environ Sci Technol ; 56(22): 15770-15779, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326805

RESUMO

Suspension feeding bivalve molluscs interact with different types of microplastics (MP) suspended in the water column. Most bivalves are selective suspension feeders and, thus, do not consume all particles to which they are exposed. Selection depends upon the physicochemical properties and size of the particle. Recent work has provided evidence that blue mussels, Mytilus edulis, and eastern oysters, Crassostrea virginica, ingest and egest microspheres (polystyrene) and microfibers (nylon) differently, but whether other factors, such as polymer type and shape, mediate selection have not been explored. To investigate these factors, mussels and oysters were offered similar sized nylon (Ny) and polyester (PES) microfibers or polyethylene (PE) and polystyrene (PS) microspheres, or different sized PES microfibers during a 2 h exposure. Feces and pseudofeces were collected separately and analyzed for MPs, and the data were used to develop a linear regression model for selection. Results demonstrated clear species-specific differences in the efficiency of particle selection. Both mussels and oysters, however, exhibited size-based rejection of PES microfibers, ingesting a higher proportion of shorter fibers than longer fibers. Polymer type did not impact selection of fibers or spheres. The relative size of particles (area and perimeter) was found to be the most important factor in predicting whether a MP will be rejected or ingested.


Assuntos
Crassostrea , Mytilus edulis , Poluentes Químicos da Água , Animais , Mytilus edulis/química , Microplásticos , Crassostrea/química , Plásticos , Poliestirenos , Nylons , Ingestão de Alimentos
20.
J Appl Microbiol ; 132(1): 736-746, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34152060

RESUMO

AIMS: The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time. METHODS AND RESULTS: In order to achieve a proof of concept, mussels were exposed to three concentrations of G. duodenalis cysts and Cryptosporidium parvum/T. gondii oocysts for 21 days, followed by 21 days of depuration in clear water. Then, natural contamination by these protozoa was sought for in wild marine blue mussels along the northwest coast of France to validate their relevance as bioindicators in the field. Our results highlighted that: (a) blue mussels bioaccumulated the parasites for 21 days, according to the conditions of exposure, and parasites could still be detected during the depuration period (until 21 days); (b) the percentage of protozoa-positive M. edulis varied under the degree of protozoan contamination in water; (c) mussel samples from eight out of nine in situ sites were positive for at least one of the protozoa. CONCLUSIONS: The blue mussel M. edulis can bioaccumulate protozoan parasites over long time periods, according to the degree of contamination of waters they are inhabiting, and can highlight recent but also past contaminations (at least 21 days). SIGNIFICANCE AND IMPACT OF THE STUDY: Mytilus edulis is a relevant bioaccumulators of protozoan (oo)cysts in laboratory and field conditions, hence its potential use for monitoring parasite contamination in marine waters.


Assuntos
Criptosporidiose , Cryptosporidium , Mytilus edulis , Animais , Ecossistema , Biomarcadores Ambientais , Laboratórios , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA