Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732578

RESUMO

Starving Myxococcus xanthus bacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that "transitioning cells" (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal-dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development.


Assuntos
Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/fisiologia , Esporos Bacterianos/fisiologia , Interações Microbianas , Myxococcus xanthus/citologia
2.
PLoS Biol ; 18(6): e3000728, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516311

RESUMO

The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated ß-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity.


Assuntos
Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Acetilação , Vias Biossintéticas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Membrana Celular/metabolismo , Família Multigênica , Myxococcus xanthus/genética , Polissacarídeos Bacterianos/química , Espectroscopia de Prótons por Ressonância Magnética , Tensoativos/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(45): 28366-28373, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093210

RESUMO

Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus, we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Myxococcus xanthus/fisiologia , Proteínas de Bactérias/genética , Polaridade Celular/fisiologia , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
4.
Proc Natl Acad Sci U S A ; 117(25): 14444-14452, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513721

RESUMO

Chemical-induced spores of the Gram-negative bacterium Myxococcus xanthus are peptidoglycan (PG)-deficient. It is unclear how these spherical spores germinate into rod-shaped, walled cells without preexisting PG templates. We found that germinating spores first synthesize PG randomly on spherical surfaces. MglB, a GTPase-activating protein, forms a cluster that responds to the status of PG growth and stabilizes at one future cell pole. Following MglB, the Ras family GTPase MglA localizes to the second pole. MglA directs molecular motors to transport the bacterial actin homolog MreB and the Rod PG synthesis complexes away from poles. The Rod system establishes rod shape de novo by elongating PG at nonpolar regions. Thus, similar to eukaryotic cells, the interactions between GTPase, cytoskeletons, and molecular motors initiate spontaneous polarization in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Myxococcus xanthus/citologia , Peptidoglicano/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Polaridade Celular , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica , Morfogênese , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/metabolismo , Myxococcus xanthus/ultraestrutura , Peptidoglicano/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura
5.
PLoS Comput Biol ; 17(1): e1008587, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465073

RESUMO

The mechanisms and design principles of regulatory systems establishing stable polarized protein patterns within cells are well studied. However, cells can also dynamically control their cell polarity. Here, we ask how an upstream signaling system can switch the orientation of a polarized pattern. We use a mathematical model of a core polarity system based on three proteins as the basis to study different mechanisms of signal-induced polarity switching. The analysis of this model reveals four general classes of switching mechanisms with qualitatively distinct behaviors: the transient oscillator switch, the reset switch, the prime-release switch, and the push switch. Each of these regulatory mechanisms effectively implements the function of a spatial toggle switch, however with different characteristics in their nonlinear and stochastic dynamics. We identify these characteristics and also discuss experimental signatures of each type of switching mechanism.


Assuntos
Polaridade Celular , Redes Reguladoras de Genes , Modelos Biológicos , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Biologia Computacional , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Myxococcus xanthus/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Processos Estocásticos
6.
Nature ; 539(7630): 530-535, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27749817

RESUMO

Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Adesões Focais/metabolismo , Myxococcus xanthus/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Movimento Celular , Proteínas Motores Moleculares/metabolismo , Myxococcus xanthus/citologia , Periplasma/metabolismo , Rotação
7.
J Bacteriol ; 202(19)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32778557

RESUMO

Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e., coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A secreted polysaccharide, referred to as exopolysaccharide (EPS), is a structural component of both biofilms and is also important for type IV pilus-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for the initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysaccharide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pilus-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pilus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pilus extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an unknown polysaccharide.IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation.


Assuntos
Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Biofilmes , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Família Multigênica , Myxococcus xanthus/citologia
8.
BMC Evol Biol ; 20(1): 145, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148179

RESUMO

BACKGROUND: Evolution in one selective environment often latently generates phenotypic change that is manifested only later in different environments, but the complexity of behavior important to fitness in the original environment might influence the character of such latent-phenotype evolution. Using Myxococcus xanthus, a bacterium possessing two motility systems differing in effectiveness on hard vs. soft surfaces, we test (i) whether and how evolution while swarming on one surface-the selective surface-latently alters motility on the alternative surface type and (ii) whether patterns of such latent-phenotype evolution depend on the complexity of ancestral motility, specific ancestral motility genotypes and/or the selective surface of evolution. We analysze an experiment in which populations established from three ancestral genotypes-one with both motility systems intact and two others with one system debilitated-evolved while swarming across either hard or soft agar in six evolutionary treatments. We then compare motility-phenotype patterns across selective vs. alternative surface types. RESULTS: Latent motility evolution was pervasive but varied in character as a function of the presence of one or two functional motility systems and, for some individual-treatment comparisons, the specific ancestral genotype and/or selective surface. Swarming rates on alternative vs. selective surfaces were positively correlated generally among populations with one functional motility system but not among those with two. This suggests that opportunities for pleiotropy and epistasis generated by increased genetic complexity underlying behavior can alter the character of latent-phenotype evolution. No tradeoff between motility performance across surface types was detected in the dual-system treatments, even after adaptation on a surface on which one motility system dominates strongly over the other in driving movement, but latent-phenotype evolution was instead idiosyncratic in these treatments. We further find that the magnitude of stochastic diversification at alternative-surface swarming among replicate populations greatly exceeded diversification of selective-surface swarming within some treatments and varied across treatments. CONCLUSION: Collectively, our results suggest that increases in the genetic and mechanistic complexity of behavior can increase the complexity of latent-phenotype evolution outcomes and illustrate that diversification manifested during evolution in one environment can be augmented greatly by diversification of latent phenotypes manifested later.


Assuntos
Evolução Molecular , Myxococcus xanthus , Adaptação Fisiológica , Genótipo , Movimento , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Fenótipo
9.
Biol Chem ; 401(12): 1375-1387, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32769218

RESUMO

In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.


Assuntos
Membrana Celular/metabolismo , Myxococcus xanthus/química , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Membrana Celular/química , Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/química
10.
Proc Natl Acad Sci U S A ; 114(23): E4592-E4601, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533367

RESUMO

Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell-cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues.


Assuntos
Modelos Biológicos , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/fisiologia , Interações Microbianas/fisiologia , Fenômenos Microbiológicos , Movimento/fisiologia , Myxococcus xanthus/citologia
11.
Biophys J ; 117(3): 420-428, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31349992

RESUMO

The plane of bacterial cell division must be precisely positioned. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a large cluster, which is tethered to the nucleoid by the ATPase PomZ and moves in a stochastic but biased manner toward midcell where it initiates cell division. Previously, a positioning mechanism based on the fluxes of PomZ on the nucleoid was proposed. However, the cluster dynamics was analyzed in a reduced, one-dimensional geometry. Here, we introduce a mathematical model that accounts for the three-dimensional shape of the nucleoid, such that nucleoid-bound PomZ dimers can diffuse past the cluster without interacting with it. Using stochastic simulations, we find that the cluster still moves to and localizes at midcell. Redistribution of PomZ by diffusion in the cytosol is essential for this cluster dynamics. Our mechanism also positions two clusters equidistantly on the nucleoid, as observed for low-copy-number plasmid partitioning. We conclude that a flux-based mechanism allows for cluster positioning in a biologically realistic three-dimensional cell geometry.


Assuntos
Proteínas de Bactérias/química , Myxococcus xanthus/citologia , Simulação por Computador , Citosol/metabolismo , Difusão , Myxococcus xanthus/metabolismo
12.
Phys Rev Lett ; 122(24): 248102, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322369

RESUMO

Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Péclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus takes advantage of a self-driven nonequilibrium phase transition that can be controlled at the single cell level.


Assuntos
Myxococcus xanthus/fisiologia , Movimento Celular/fisiologia , Myxococcus xanthus/química , Myxococcus xanthus/citologia , Transição de Fase
13.
EMBO Rep ; 18(7): 1090-1099, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28487352

RESUMO

The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail-like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail-like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors. While structures of purified contracted sheath and purified membrane complex have been solved, because sheaths contract upon cell lysis and purification, no structure is available for the extended sheath. Structural information about the baseplate is also lacking. Here, we use electron cryotomography to directly visualize intact T6SS structures inside Myxococcus xanthus cells. Using sub-tomogram averaging, we resolve the structure of the extended sheath and membrane-associated components including the baseplate. Moreover, we identify novel extracellular bacteriophage tail fiber-like antennae. These results provide new structural insights into how the extended sheath prevents premature disassembly and how this sophisticated machine may recognize targets.


Assuntos
Myxococcus xanthus/ultraestrutura , Sistemas de Secreção Tipo VI/ultraestrutura , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Estrutura Molecular , Myxococcus xanthus/química , Myxococcus xanthus/citologia , Ligação Proteica , Multimerização Proteica , Sistemas de Secreção Tipo VI/química
14.
Biophys J ; 115(12): 2499-2511, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514635

RESUMO

Myxococcus xanthus is a soil bacterium that serves as a model system for biological self-organization. Cells form distinct, dynamic patterns depending on environmental conditions. An agent-based model was used to understand how M. xanthus cells aggregate into multicellular mounds in response to starvation. In this model, each cell is modeled as an agent represented by a point particle and characterized by its position and moving direction. At low agent density, the model recapitulates the dynamic patterns observed by experiments and a previous biophysical model. To study aggregation at high cell density, we extended the model based on the recent experimental observation that cells exhibit biased movement toward aggregates. We tested two possible mechanisms for this biased movement and demonstrate that a chemotaxis model with adaptation can reproduce the observed experimental results leading to the formation of stable aggregates. Furthermore, our model reproduces the experimentally observed patterns of cell alignment around aggregates.


Assuntos
Modelos Biológicos , Myxococcus xanthus/citologia , Contagem de Células , Quimiotaxia , Difusão
15.
Dev Growth Differ ; 60(2): 121-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29441522

RESUMO

Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell-fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell-fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.


Assuntos
Modelos Biológicos , Myxococcus xanthus/citologia , Myxococcus xanthus/crescimento & desenvolvimento , Movimento
16.
Proc Natl Acad Sci U S A ; 112(2): E186-93, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25550521

RESUMO

Gliding motility in Myxococcus xanthus is powered by flagella stator homologs that move in helical trajectories using proton motive force. The Frz chemosensory pathway regulates the cell polarity axis through MglA, a Ras family GTPase; however, little is known about how MglA establishes the polarity of gliding, because the gliding motors move simultaneously in opposite directions. Here we examined the localization and dynamics of MglA and gliding motors in high spatial and time resolution. We determined that MglA localizes not only at the cell poles, but also along the cell bodies, forming a decreasing concentration gradient toward the lagging cell pole. MglA directly interacts with the motor protein AglR, and the spatial distribution of AglR reversals is positively correlated with the MglA gradient. Thus, the motors moving toward lagging cell poles are less likely to reverse, generating stronger forward propulsion. MglB, the GTPase-activating protein of MglA, regulates motor reversal by maintaining the MglA gradient. Our results suggest a mechanism whereby bacteria use Ras family proteins to modulate cellular polarity.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas Motores Moleculares/fisiologia , Myxococcus xanthus/fisiologia , Proteínas de Bactérias/genética , Corpo Celular/fisiologia , Polaridade Celular/fisiologia , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Motores Moleculares/genética , Movimento/fisiologia , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas ras/genética , Proteínas ras/fisiologia
17.
Biophys J ; 113(11): 2477-2486, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212001

RESUMO

Swarming bacteria use kin discrimination to preferentially associate with their clonemates for certain cooperative behaviors. Kin discrimination can manifest as an apparent demarcation line (a region lacking cells or with much lower cell density) between antagonist strains swarming toward each other. In contrast, two identical strains merge with no demarcation. Experimental studies suggest contact-dependent killing between different strains as a mechanism of kin discrimination, but it is not clear whether this killing is sufficient to explain the observed patterns. Here, we investigate the formation of demarcation line with a mathematical model. First, using data from competition experiments between kin discriminating strains of Myxococcus xanthus and Proteus mirabilis, we found the rates of killing between the strains to be highly asymmetric, i.e., one strain kills another at a much higher rate. Then, to investigate how such asymmetric interactions can lead to a stable demarcation line, we construct reaction-diffusion models for colony expansion of kin-discriminatory strains. Our results demonstrate that a stable demarcation line can form when both cell movement and cell growth cease at low nutrient levels. Further, our study suggests that, depending on the initial separation between the inoculated colonies, the demarcation line may move transiently before stabilizing. We validated these model predictions by observing dynamics of merger between two M. xanthus strains, where one strain expresses a toxin protein that kills a second strain lacking the corresponding antitoxin. Our study therefore provides a theoretical understanding of demarcation line formation between kin-discriminatory populations, and can be used for analyzing and designing future experiments.


Assuntos
Movimento , Myxococcus xanthus/fisiologia , Proteus mirabilis/fisiologia , Modelos Biológicos , Myxococcus xanthus/citologia , Proteus mirabilis/citologia
18.
Proc Natl Acad Sci U S A ; 111(36): 13105-10, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25149859

RESUMO

We offer evidence for a signal that synchronizes the behavior of hundreds of Myxococcus xanthus cells in a growing swarm. Swarms are driven to expand by the periodic reversing of direction by members. By using time-lapse photomicroscopy, two organized multicellular elements of the swarm were analyzed: single-layered, rectangular rafts and round, multilayered mounds. Rafts of hundreds of cells with their long axes aligned in parallel enlarge as individual cells from the neighborhood join them from either side. Rafts can also add a second layer piece by piece. By repeating layer additions to a raft and rounding each layer, a regular multilayered mound can be formed. About an hour after a five-layered mound had formed, all of the cells from its top layer descended to the periphery of the fourth layer, both rapidly and synchronously. Following the first synchronized descent and spaced at constant time intervals, a new fifth layer was (re)constructed from fourth-layer cells, in very close proximity to its old position and with a number of cells similar to that before the "explosive" descent. This unexpected series of changes in mound structure can be explained by the spread of a signal that synchronizes the reversals of large groups of individual cells.


Assuntos
Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Movimento , Fatores de Tempo
19.
PLoS Genet ; 9(9): e1003802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068967

RESUMO

Cells closely coordinate cell division with chromosome replication and segregation; however, the mechanisms responsible for this coordination still remain largely unknown. Here, we analyzed the spatial arrangement and temporal dynamics of the 9.1 Mb circular chromosome in the rod-shaped cells of Myxococcus xanthus. For chromosome segregation, M. xanthus uses a parABS system, which is essential, and lack of ParB results in chromosome segregation defects as well as cell divisions over nucleoids and the formation of anucleate cells. From the determination of the dynamic subcellular location of six genetic loci, we conclude that in newborn cells ori, as monitored following the ParB/parS complex, and ter regions are localized in the subpolar regions of the old and new cell pole, respectively and each separated from the nearest pole by approximately 1 µm. The bulk of the chromosome is arranged between the two subpolar regions, thus leaving the two large subpolar regions devoid of DNA. Upon replication, one ori region remains in the original subpolar region while the second copy segregates unidirectionally to the opposite subpolar region followed by the rest of the chromosome. In parallel, the ter region of the mother chromosome relocates, most likely passively, to midcell, where it is replicated. Consequently, after completion of replication and segregation, the two chromosomes show an ori-ter-ter-ori arrangement with mirror symmetry about a transverse axis at midcell. Upon completion of segregation of the ParB/parS complex, ParA localizes in large patches in the DNA-free subpolar regions. Using an Ssb-YFP fusion as a proxy for replisome localization, we observed that the two replisomes track independently of each other from a subpolar region towards ter. We conclude that M. xanthus chromosome arrangement and dynamics combine features from previously described systems with new features leading to a novel spatiotemporal arrangement pattern.


Assuntos
Divisão Celular , Segregação de Cromossomos/genética , Cromossomos Bacterianos/genética , Replicação do DNA/genética , Proteínas de Bactérias/genética , DNA Primase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Origem de Replicação/genética
20.
Bioinformatics ; 30(9): 1331-2, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24443380

RESUMO

Morpheus is a modeling environment for the simulation and integration of cell-based models with ordinary differential equations and reaction-diffusion systems. It allows rapid development of multiscale models in biological terms and mathematical expressions rather than programming code. Its graphical user interface supports the entire workflow from model construction and simulation to visualization, archiving and batch processing.


Assuntos
Biologia de Sistemas/métodos , Modelos Biológicos , Myxococcus xanthus/citologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA