Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 174, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789945

RESUMO

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Assuntos
Imageamento por Ressonância Magnética , Tálamo , Torcicolo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Torcicolo/diagnóstico por imagem , Torcicolo/patologia , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto , Idoso , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia
2.
Neurol Sci ; 45(5): 2063-2073, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38049551

RESUMO

OBJECTIVE: This study aimed to examine the volumes of thalamic nuclei and the intrinsic thalamic network in patients with Wilson's disease (WDs), and to explore the correlation between these volumes and the severity of neurological symptoms. METHODS: A total of 61 WDs and 33 healthy controls (HCs) were included in the study. The volumes of 25 bilateral thalamic nuclei were measured using structural imaging analysis with Freesurfer, and the intrinsic thalamic network was evaluated through structural covariance network (SCN) analysis. RESULTS: The results indicated that multiple thalamic nuclei were smaller in WDs compared to HCs, including mediodorsal medial magnocellular (MDm), anterior ventral (AV), central median (CeM), centromedian (CM), lateral geniculate (LGN), limitans-suprageniculate (L-Sg), reuniens-medial ventral (MV), paracentral (Pc), parafascicular (Pf), paratenial (Pt), pulvinar anterior (PuA), pulvinar inferior (PuI), pulvinar medial (PuM), ventral anterior (VA), ventral anterior magnocellular (VAmc), ventral lateral anterior (VLa), ventral lateral posterior (VLp), ventromedial (VM), ventral posterolateral (VPL), and right middle dorsal intralaminar (MDI). The study also found a negative correlation between the UWDRS scores and the volume of the right MDm. The intrinsic thalamic network analysis showed abnormal topological properties in WDs, including increased mean local efficiency, modularity, normalized clustering coefficient, small-world index, and characteristic path length, and a corresponding decrease in mean node betweenness centrality. WDs with cerebral involvement had a lower modularity compared to HCs. CONCLUSIONS: The findings suggest that the majority of thalamic nuclei in WDs exhibit significant volume reduction, and the atrophy of the right MDm is closely related to the severity of neurological symptoms. The intrinsic thalamic network in WDs demonstrated abnormal topological properties, indicating a close relationship with neurological impairment.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836602

RESUMO

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to localize brain functions. To further advance understanding of brain functions, it is critical to understand the direction of information flow, such as thalamocortical versus corticothalamic projections. For this work, we performed ultrahigh spatiotemporal resolution fMRI at 15.2 T of the mouse somatosensory network during forepaw somatosensory stimulation and optogenetic stimulation of the primary motor cortex (M1). Somatosensory stimulation induced the earliest BOLD response in the ventral posterolateral nucleus (VPL), followed by the primary somatosensory cortex (S1) and then M1 and posterior thalamic nucleus. Optogenetic stimulation of excitatory neurons in M1 induced the earliest BOLD response in M1, followed by S1 and then VPL. Within S1, the middle cortical layers responded to somatosensory stimulation earlier than the upper or lower layers, whereas the upper cortical layers responded earlier than the other two layers to optogenetic stimulation in M1. The order of early BOLD responses was consistent with the canonical understanding of somatosensory network connections and cannot be explained by regional variabilities in the hemodynamic response functions measured using hypercapnic stimulation. Our data demonstrate that early BOLD responses reflect the information flow in the mouse somatosensory network, suggesting that high-field fMRI can be used for systems-level network analyses.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Mapeamento Encefálico , Membro Anterior/fisiologia , Hemodinâmica , Hipercapnia/diagnóstico por imagem , Hipercapnia/fisiopatologia , Camundongos , Microvasos/diagnóstico por imagem , Microvasos/fisiologia , Córtex Motor/irrigação sanguínea , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Rede Nervosa/irrigação sanguínea , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Optogenética , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/diagnóstico por imagem , Núcleos Talâmicos/irrigação sanguínea , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/fisiologia
4.
Neuroimage ; 274: 120129, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088323

RESUMO

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer's disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer (https://freesurfer.net/fswiki/ThalamicNucleiDTI).


Assuntos
Imagem de Tensor de Difusão , Núcleos Talâmicos , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , Núcleos Talâmicos/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
Hum Brain Mapp ; 44(2): 612-628, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181510

RESUMO

Specific thalamic nuclei are implicated in healthy aging and age-related neurodegenerative diseases. However, few methods are available for robust automated segmentation of thalamic nuclei. The threefold aims of this study were to validate the use of a modified thalamic nuclei segmentation method on standard T1 MRI data, to apply this method to quantify age-related volume declines, and to test functional meaningfulness by predicting performance on motor testing. A modified version of THalamus Optimized Multi-Atlas Segmentation (THOMAS) generated 22 unilateral thalamic nuclei. For validation, we compared nuclear volumes obtained from THOMAS parcellation of white-matter-nulled (WMn) MRI data to T1 MRI data in 45 participants. To examine the effects of age/sex on thalamic nuclear volumes, T1 MRI available from a second data set of 121 men and 117 women, ages 20-86 years, were segmented using THOMAS. To test for functional ramifications, composite regions and constituent nuclei were correlated with Grooved Pegboard test scores. THOMAS on standard T1 data showed significant quantitative agreement with THOMAS from WMn data, especially for larger nuclei. Sex differences revealing larger volumes in men than women were accounted for by adjustment with supratentorial intracranial volume (sICV). Significant sICV-adjusted correlations between age and thalamic nuclear volumes were detected in 20 of the 22 unilateral nuclei and whole thalamus. Composite Posterior and Ventral regions and Ventral Anterior/Pulvinar nuclei correlated selectively with higher scores from the eye-hand coordination task. These results support the use of THOMAS for standard T1-weighted data as adequately robust for thalamic nuclear parcellation.


Assuntos
Núcleos Talâmicos , Substância Branca , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Núcleos Talâmicos/diagnóstico por imagem , Tálamo , Envelhecimento , Imageamento por Ressonância Magnética/métodos
6.
Mult Scler ; 29(2): 295-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959722

RESUMO

OBJECTIVES: Investigating differential vulnerability of thalamic nuclei in multiple sclerosis (MS). METHODS: In a secondary analysis of prospectively collected datasets, we pooled 136 patients with MS or clinically isolated syndrome and 71 healthy controls all scanned with conventional 3D-T1 and white-matter-nulled magnetization-prepared rapid gradient echo (WMn-MPRAGE) and tested for cognitive performance. T1-based thalamic segmentation was compared with the reference WMn-MPRAGE method. Volumes of thalamic nuclei were compared according to clinical phenotypes and cognitive profile. RESULTS: T1- and WMn-MPRAGE provided comparable segmentations (0.84 ± 0.13 < volume-similarity-index < 0.95 ± 0.03). Medial and posterior thalamic groups were significantly more affected than anterior and lateral groups. Cognitive impairment related to volume loss of the anterior group. CONCLUSION: Thalamic nuclei closest to the third ventricle are more affected, with cognitive consequences.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
7.
Neuroimage ; 258: 119340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649466

RESUMO

The thalamus is a brain region formed from functionally distinct nuclei, which contribute in important ways to various cognitive processes. Yet, much of the human neuroscience literature treats the thalamus as one homogeneous region, and consequently the unique contribution of specific nuclei to behaviour remains under-appreciated. This is likely due in part to the technical challenge of dissociating nuclei using conventional structural imaging approaches. Yet, multiple algorithms exist in the neuroimaging literature for the automated segmentation of thalamic nuclei. One recent approach developed by Iglesias and colleagues (2018) generates segmentations by applying a probabilistic atlas to subject-space anatomical images using the FreeSurfer software. Here, we systematically validate the efficacy of this segmentation approach in delineating thalamic nuclei using Human Connectome Project data. We provide several metrics quantifying the quality of segmentations relative to the Morel stereotaxic atlas, a widely accepted anatomical atlas based on cyto- and myeloarchitecture. The automated segmentation approach generated boundaries between the anterior, lateral, posterior, and medial divisions of the thalamus. Segmentation efficacy, as measured by metrics of dissimilarity (Average Hausdorff Distance) and overlap (DICE coefficient) within groups was mixed. Regions were better delineated in anterior, lateral and medial thalamus than the posterior thalamus, however all the volumes for all segmented nuclei were significantly different to the corresponding region of the Morel atlas. These mixed results suggest users should exercise care when using this approach to study the structural or functional relevance of a given thalamic nucleus.


Assuntos
Conectoma , Tálamo , Algoritmos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem
8.
Neuroimage ; 262: 119584, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007822

RESUMO

The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20-88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging.


Assuntos
Núcleos Talâmicos , Tálamo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atrofia/patologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
9.
Neuroradiology ; 64(9): 1839-1846, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35399109

RESUMO

PURPOSE: This study aimed to compare the alterations of thalamic nuclei volumes and the intrinsic thalamic network in patients with cluster headache and healthy controls. METHODS: We retrospectively enrolled 24 patients with episodic cluster headache and 24 healthy controls. We calculated the thalamic nuclei volumes in the patients with cluster headache and healthy controls based on three-dimensional T1-weighted imaging with automated segmentation using the FreeSurfer program. We also investigated the intrinsic thalamic network using structural co-variance analysis based on the thalamic nuclei volumes and graph theory under the BRAPH program. We compared the thalamic nuclei volumes and intrinsic thalamic networks in patients with cluster headaches and healthy controls. RESULTS: The right and left whole thalamic volumes did not differ in the patients with cluster headaches and healthy controls (0.4199 vs. 0.4069%, p = 0.2008; 0.4386 vs. 0.4273%, p = 0.3437; respectively). However, there were significant alterations of right and left medial geniculate nuclei volumes in the patients with cluster headaches and the healthy controls. The right and left medial geniculate nuclei volumes of the patients with cluster headaches were greater than those of the healthy controls (0.0088 vs. 0.0075%, p < 0.0001; 0.0086 vs. 0.0072%, p < 0.0001; respectively). The intrinsic thalamic networks of the groups were not different. CONCLUSION: This study demonstrates significant alterations in the bilateral medial geniculate nuclei volumes in patients with cluster headache compared to healthy controls. These alterations may be related to the pathophysiology of cluster headache. However, there are no changes in the intrinsic thalamic network in patients with cluster headache.


Assuntos
Cefaleia Histamínica , Núcleos Talâmicos , Estudos de Casos e Controles , Cefaleia Histamínica/diagnóstico por imagem , Cefaleia Histamínica/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão , Estudos Retrospectivos , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia
10.
Cereb Cortex ; 31(12): 5613-5636, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34296740

RESUMO

The development of novel techniques for the in vivo, non-invasive visualization and identification of thalamic nuclei has represented a major challenge for human neuroimaging research in the last decades. Thalamic nuclei have important implications in various key aspects of brain physiology and many of them show selective alterations in various neurologic and psychiatric disorders. In addition, both surgical stimulation and ablation of specific thalamic nuclei have been proven to be useful for the treatment of different neuropsychiatric diseases. The present work aimed at describing a novel protocol for histologically guided delineation of thalamic nuclei based on short-tracks track-density imaging (stTDI), which is an advanced imaging technique exploiting high angular resolution diffusion tractography to obtain super-resolved white matter maps. We demonstrated that this approach can identify up to 13 distinct thalamic nuclei bilaterally with very high inter-subject (ICC: 0.996, 95% CI: 0.993-0.998) and inter-rater (ICC:0.981; 95% CI:0.963-0.989) reliability, and that both subject-based and group-level thalamic parcellation show a fair share of similarity to a recent standard-space histological thalamic atlas. Finally, we showed that stTDI-derived thalamic maps can be successfully employed to study structural and functional connectivity of the thalamus and may have potential implications both for basic and translational research, as well as for presurgical planning purposes.


Assuntos
Núcleos Talâmicos , Substância Branca , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
11.
Hum Brain Mapp ; 42(13): 4399-4421, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101297

RESUMO

Human brain atlases are essential for research and surgical treatment of Parkinson's disease (PD). For example, deep brain stimulation for PD often requires human brain atlases for brain structure identification. However, few atlases can provide disease-specific subcortical structures for PD, and most of them are based on T1w and T2w images. In this work, we construct a HybraPD atlas using fused quantitative susceptibility mapping (QSM) and T1w images from 87 patients with PD. The constructed HybraPD atlas provides a series of templates, that is, T1w, GRE magnitude, QSM, R2*, and brain tissue probabilistic maps. Then, we manually delineate a parcellation map with 12 bilateral subcortical nuclei, which are highly related to PD pathology, such as sub-regions in globus pallidus and substantia nigra. Furthermore, we build a whole-brain parcellation map by combining existing cortical parcellation and white-matter segmentation with the proposed subcortical nuclei map. Considering the multimodality of the HybraPD atlas, the segmentation accuracy of each nucleus is evaluated using T1w and QSM templates, respectively. The results show that the HybraPD atlas provides more accurate segmentation than existing atlases. Moreover, we analyze the metabolic difference in subcortical nuclei between PD patients and healthy control subjects by applying the HybraPD atlas to calculate uptake values of contrast agents on positron emission tomography (PET) images. The atlas-based analysis generates accurate disease-related brain nuclei segmentation on PET images. The newly developed HybraPD atlas could serve as an efficient template to study brain pathological alterations in subcortical regions for PD research.


Assuntos
Gânglios da Base/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Adulto , Idoso , Atlas como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos
12.
Hum Brain Mapp ; 42(17): 5648-5664, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432348

RESUMO

It is well established that abnormal thalamocortical systems play an important role in the generation and maintenance of primary generalised seizures. However, it is currently unknown which thalamic nuclei and how nuclear-specific thalamocortical functional connectivity are differentially impacted in patients with medically refractory and non-refractory idiopathic generalised epilepsy (IGE). In the present study, we performed structural and resting-state functional magnetic resonance imaging (MRI) in patients with refractory and non-refractory IGE, segmented the thalamus into constituent nuclear regions using a probabilistic MRI segmentation method and determined thalamocortical functional connectivity using seed-to-voxel connectivity analyses. We report significant volume reduction of the left and right anterior thalamic nuclei only in patients with refractory IGE. Compared to healthy controls, patients with refractory and non-refractory IGE had significant alterations of functional connectivity between the centromedian nucleus and cortex, but only patients with refractory IGE had altered cortical connectivity with the ventral lateral nuclear group. Patients with refractory IGE had significantly increased functional connectivity between the left and right ventral lateral posterior nuclei and cortical regions compared to patients with non-refractory IGE. Cortical effects were predominantly located in the frontal lobe. Atrophy of the anterior thalamic nuclei and resting-state functional hyperconnectivity between ventral lateral nuclei and cerebral cortex may be imaging markers of pharmacoresistance in patients with IGE. These structural and functional abnormalities fit well with the known importance of thalamocortical systems in the generation and maintenance of primary generalised seizures, and the increasing recognition of the importance of limbic pathways in IGE.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiopatologia , Núcleos Talâmicos/fisiopatologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Generalizada/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Adulto Jovem
13.
Magn Reson Med ; 85(5): 2781-2790, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33270943

RESUMO

PURPOSE: Thalamic nuclei are largely invisible in conventional MRI due to poor contrast. Thalamus Optimized Multi-Atlas Segmentation (THOMAS) provides automatic segmentation of 12 thalamic nuclei using white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence at 7T, but increases overall scan duration. Routinely acquired, bias-corrected Magnetization Prepared 2 Rapid Gradient Echo (MP2RAGE) sequence yields superior tissue contrast and quantitative T1 maps. Application of THOMAS to MP2RAGE has been investigated in this study. METHODS: Eight healthy volunteers and five pediatric-onset multiple sclerosis patients were recruited at Children's Hospital of Philadelphia and scanned at Siemens 7T with WMn-MPRAGE and multi-echo-MP2RAGE (ME-MP2RAGE) sequences. White-matter-nulled contrast was synthesized (MP2-SYN) from T1 maps from ME-MP2RAGE sequence. Thalamic nuclei were segmented using THOMAS joint label fusion algorithm from WMn-MPRAGE and MP2-SYN datasets. THOMAS pipeline was modified to use majority voting to segment bias corrected T1-weighted uniform (MP2-UNI) images. Thalamic nuclei from MP2-SYN and MP2-UNI images were evaluated against corresponding nuclei obtained from WMn-MPRAGE images using dice coefficients, volume similarity indices (VSIs) and distance between centroids. RESULTS: For MP2-SYN, dice > 0.85 and VSI > 0.95 was achieved for five larger nuclei and dice > 0.6 and VSI > 0.7 was achieved for seven smaller nuclei. The dice and VSI were slightly higher, whereas the distance between centroids were smaller for MP2-SYN compared to MP2-UNI, indicating improved performance using the MP2-SYN image. CONCLUSIONS: THOMAS algorithm can successfully segment thalamic nuclei in MP2RAGE images with essentially equivalent quality as WMn-MPRAGE, widening its applicability in studies focused on thalamic involvement in aging and disease.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Algoritmos , Encéfalo , Criança , Humanos , Imageamento por Ressonância Magnética , Núcleos Talâmicos/diagnóstico por imagem
14.
Neuroimage ; 218: 116960, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454205

RESUMO

The human thalamus is an integrative hub richly connected with cortical networks, involving diverse cognitive functions. Emerging evidence suggests that multiscale structural and functional gradients integrate various information across modalities into an abstract representation. However, the presence of functional gradients in the thalamus and its relationship to structural properties and cognitive functions remain unknown. We estimated the functional gradients of the thalamus in two independent normal cohorts using a novel diffusion embedding analysis. We identified two main axes of the functional connectivity patterns, and examined associations with thalamic anatomy, morphology, intrinsic geometry, and specific behavioral relevance. We found that the dominant gradient indicated a lateral/medial axis across the thalamus and captured associations with anatomical nuclei and gray matter volume. The second gradient was an anterior/posterior axis and provided a behavioral characterization from lower level perception to higher level cognition. Furthermore, these two gradients strongly correlated with spatial distance, indicating the prominence of intrinsic geometry in functional hierarchies. These findings were replicated in an independent dataset. Overall, our findings suggested that macroscale gradients showed a coordination of structural and functional interactions, with hierarchical organization contributing to behavior characterization.


Assuntos
Cognição/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Adulto , Comportamento , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Conectoma , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Percepção/fisiologia , Valores de Referência , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/fisiologia , Adulto Jovem
15.
Hum Brain Mapp ; 41(8): 2104-2120, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957926

RESUMO

Thalamic alterations occur in many neurological disorders including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Routine interventions to improve symptom severity in movement disorders, for example, often consist of surgery or deep brain stimulation to diencephalic nuclei. Therefore, accurate delineation of grey matter thalamic subregions is of the upmost clinical importance. MRI is highly appropriate for structural segmentation as it provides different views of the anatomy from a single scanning session. Though with several contrasts potentially available, it is also of increasing importance to develop new image segmentation techniques that can operate multi-spectrally. We hereby propose a new segmentation method for use with multi-modality data, which we evaluated for automated segmentation of major thalamic subnuclear groups using T1 -weighted, T2* -weighted and quantitative susceptibility mapping (QSM) information. The proposed method consists of four steps: Highly iterative image co-registration, manual segmentation on the average training-data template, supervised learning for pattern recognition, and a final convex optimisation step imposing further spatial constraints to refine the solution. This led to solutions in greater agreement with manual segmentation than the standard Morel atlas based approach. Furthermore, we show that the multi-contrast approach boosts segmentation performances. We then investigated whether prior knowledge using the training-template contours could further improve convex segmentation accuracy and robustness, which led to highly precise multi-contrast segmentations in single subjects. This approach can be extended to most 3D imaging data types and any region of interest discernible in single scans or multi-subject templates.


Assuntos
Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Núcleos Talâmicos/anatomia & histologia , Núcleos Talâmicos/diagnóstico por imagem , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão , Aprendizado de Máquina Supervisionado
16.
Hum Brain Mapp ; 41(14): 4041-4061, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448519

RESUMO

The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.


Assuntos
Substância Cinzenta/patologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , Núcleos Talâmicos/patologia , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
17.
Hum Brain Mapp ; 41(5): 1351-1361, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785046

RESUMO

Volumes of thalamic nuclei are differentially affected by disease-related processes including alcoholism and human immunodeficiency virus (HIV) infection. This MRI study included 41 individuals diagnosed with alcohol use disorders (AUD, 12 women), 17 individuals infected with HIV (eight women), and 49 healthy controls (24 women) aged 39 to 75 years. A specialized, high-resolution acquisition protocol enabled parcellation of five thalamic nuclei: anterior [anterior ventral (AV)], posterior [pulvinar (Pul)], medial [mediodorsal (MD)], and ventral [including ventral lateral posterior (VLp) and ventral posterior lateral (VPl)]. An omnibus mixed-model approach solving for volume considered the "fixed effects" of nuclei, diagnosis, and their interaction while covarying for hemisphere, sex, age, and supratentorial volume (svol). The volume by diagnosis interaction term was significant; the effects of hemisphere and sex were negligible. Follow-up mixed-model tests thus evaluated the combined (left + right) volume of each nucleus separately for effects of diagnosis while controlling for age and svol. Only the VLp showed diagnoses effects and was smaller in the AUD (p = .04) and HIV (p = .0003) groups relative to the control group. In the AUD group, chronic back pain (p = .008) and impaired deep tendon ankle reflex (p = .0005) were associated with smaller VLp volume. In the HIV group, lower CD4 nadir (p = .008) was associated with smaller VLp volume. These results suggest that the VLp is differentially sensitive to disease processes associated with AUD and HIV.


Assuntos
Alcoolismo/diagnóstico por imagem , Dor nas Costas/diagnóstico por imagem , Dor nas Costas/etiologia , Contagem de Linfócito CD4 , Infecções por HIV/complicações , Infecções por HIV/diagnóstico por imagem , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Adulto , Idoso , Envelhecimento , Alcoolismo/imunologia , Dor nas Costas/imunologia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reflexo de Estiramento , Fatores Sexuais , Núcleos Talâmicos/diagnóstico por imagem
18.
Magn Reson Med ; 84(3): 1218-1234, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32052486

RESUMO

PURPOSE: The thalamus is an important brain structure and neurosurgical target, but its constituting nuclei are challenging to image non-invasively. Recently, susceptibility-weighted imaging (SWI) at ultra-high field has shown promising capabilities for thalamic nuclei mapping. In this work, several methodological improvements were explored to enhance SWI quality and contrast, and specifically its ability for thalamic imaging. METHODS: High-resolution SWI was performed at 7T in healthy participants, and the following techniques were applied: (a) monitoring and retrospective correction of head motion and B0 perturbations using integrated MR navigators, (b) segmentation and removal of venous vessels on the SWI data using vessel enhancement filtering, and (c) contrast enhancement by tuning the parameters of the SWI phase-magnitude combination. The resulting improvements were evaluated with quantitative metrics of image quality, and by comparison to anatomo-histological thalamic atlases. RESULTS: Even with sub-millimeter motion and natural breathing, motion and field correction produced clear improvements in both magnitude and phase data quality (76% and 41%, respectively). The improvements were stronger in cases of larger motion/field deviations, mitigating the dependence of image quality on subject performance. Optimizing the SWI phase-magnitude combination yielded substantial improvements in image contrast, particularly in the thalamus, well beyond previously reported SWI results. The atlas comparisons provided compelling evidence of anatomical correspondence between SWI features and several thalamic nuclei, for example, the ventral intermediate nucleus. Vein detection performed favorably inside the thalamus, and vein removal further improved visualization. CONCLUSION: Altogether, the proposed developments substantially improve high-resolution SWI, particularly for thalamic nuclei imaging.


Assuntos
Imageamento por Ressonância Magnética , Núcleos Talâmicos , Encéfalo , Humanos , Estudos Retrospectivos , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem
19.
Psychol Med ; 50(9): 1501-1509, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31358071

RESUMO

BACKGROUND: Previous models suggest biological and behavioral continua among healthy individuals (HC), at-risk condition, and full-blown schizophrenia (SCZ). Part of these continua may be captured by schizotypy, which shares subclinical traits and biological phenotypes with SCZ, including thalamic structural abnormalities. In this regard, previous findings have suggested that multivariate volumetric patterns of individual thalamic nuclei discriminate HC from SCZ. These results were obtained using machine learning, which allows case-control classification at the single-subject level. However, machine learning accuracy is usually unsatisfactory possibly due to phenotype heterogeneity. Indeed, a source of misclassification may be related to thalamic structural characteristics of those HC with high schizotypy, which may resemble structural abnormalities of SCZ. We hypothesized that thalamic structural heterogeneity is related to schizotypy, such that high schizotypal burden would implicate misclassification of those HC whose thalamic patterns resemble SCZ abnormalities. METHODS: Following a previous report, we used Random Forests to predict diagnosis in a case-control sample (SCZ = 131, HC = 255) based on thalamic nuclei gray matter volumes estimates. Then, we investigated whether the likelihood to be classified as SCZ (π-SCZ) was associated with schizotypy in 174 HC, evaluated with the Schizotypal Personality Questionnaire. RESULTS: Prediction accuracy was 72.5%. Misclassified HC had higher positive schizotypy scores, which were correlated with π-SCZ. Results were specific to thalamic rather than whole-brain structural features. CONCLUSIONS: These findings strengthen the relevance of thalamic structural abnormalities to SCZ and suggest that multivariate thalamic patterns are correlates of the continuum between schizotypy in HC and the full-blown disease.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Voluntários Saudáveis , Esquizofrenia/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Tamanho do Órgão , Adulto Jovem
20.
Mult Scler ; 26(8): 987-992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730233

RESUMO

BACKGROUND: Investigating the degeneration of specific thalamic nuclei in multiple sclerosis (MS) remains challenging. METHODS: White-matter-nulled (WMn) MPRAGE, MP-FLAIR, and standard T1-weighted magnetic resonance imaging (MRI) were performed on MS patients (n = 15) and matched controls (n = 12). Thalamic lesions were counted in individual sequences and lesion contrast-to-noise ratio (CNR) was measured. Volumes of 12 thalamic nuclei were measured using an automatic segmentation pipeline specifically developed for WMn-MPRAGE. RESULTS: WMn-MPRAGE showed more thalamic MS lesions (n = 35 in 9 out of 15 patients) than MP-FLAIR (n = 25) and standard T1 (n = 23), which was associated with significant improvement of CNR (p < 0.0001). MS patients had whole thalamus atrophy (p = 0.003) with lower volumes found for the anteroventral (p < 0.001), the pulvinar (p < 0.0001), and the habenular (p = 0.004) nuclei. CONCLUSION: WMn-MPRAGE and automatic thalamic segmentation can highlight thalamic MS lesions and measure patterns of focal thalamic atrophy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Núcleos Talâmicos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Atlas como Assunto , Atrofia/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Núcleos Talâmicos/patologia , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA